UNPKG

abyss-ai

Version:

Autonomous AI coding agent - enhanced OpenCode with autonomous capabilities

1,034 lines (837 loc) 34.2 kB
import { Log } from "../../util/log" import { IAgent, AgentTask, AgentResult, ProcessingContext, ProcessingResult, FileChunk, ChunkResult, ReasoningMode } from "../types/agent" export class LargeFileProcessor { private log = Log.create({ service: "large-file-processor" }) private chunkSize: number = 5000 // characters per chunk private overlapSize: number = 200 // overlap between chunks private maxConcurrentChunks: number = 4 // parallel processing limit constructor( chunkSize: number = 5000, overlapSize: number = 200, maxConcurrentChunks: number = 4 ) { this.chunkSize = chunkSize this.overlapSize = overlapSize this.maxConcurrentChunks = maxConcurrentChunks this.log.info("LargeFileProcessor initialized", { chunkSize: this.chunkSize, overlapSize: this.overlapSize, maxConcurrentChunks: this.maxConcurrentChunks }) } async processLargeFile(filePath: string, context: ProcessingContext): Promise<ProcessingResult> { this.log.info("Processing large file", { filePath, context }) const startTime = Date.now() try { // Read file content const fileContent = await this.readFile(filePath) if (fileContent.length <= this.chunkSize) { this.log.info("File is small enough for direct processing") return await this.processSmallFile(fileContent, context) } // Create chunks with overlap const chunks = this.chunkFile(fileContent) this.log.info("File chunked", { totalChunks: chunks.length, avgChunkSize: Math.round(chunks.reduce((sum, c) => sum + c.content.length, 0) / chunks.length) }) // Create sub-agents for each chunk (virtual agents using provided processing logic) const chunkAgents = this.createChunkAgents(chunks.length) // Process chunks in parallel with all reasoning modes const chunkResults = await this.processChunksInParallel(chunks, chunkAgents, context) // Synthesize results across chunks const synthesizedResult = await this.synthesizeChunkResults(chunkResults, fileContent) // Verify progress and ensure no details missed const verificationResult = await this.verifyAnalysis(synthesizedResult, fileContent, chunks) const processingTime = Date.now() - startTime return { type: 'large-file-processing', result: synthesizedResult, verification: verificationResult, chunksProcessed: chunks.length, confidence: this.calculateOverallConfidence(synthesizedResult, verificationResult), processingTime } } catch (error) { this.log.error("Large file processing failed", { filePath, error }) throw error } } private async readFile(filePath: string): Promise<string> { try { // Use Bun's file API for reading const file = Bun.file(filePath) const content = await file.text() this.log.debug("File read successfully", { filePath, size: content.length, lines: content.split('\n').length }) return content } catch (error) { this.log.error("Failed to read file", { filePath, error }) throw new Error(`Cannot read file: ${filePath}`) } } private async processSmallFile(content: string, context: ProcessingContext): Promise<ProcessingResult> { // For small files, process directly without chunking return { type: 'direct-processing', result: { content, analysis: 'File processed directly without chunking', insights: ['File size within direct processing limit'], structure: this.analyzeFileStructure(content) }, confidence: 0.9, processingTime: 0 } } private chunkFile(content: string): FileChunk[] { const chunks: FileChunk[] = [] const lines = content.split('\n') let currentChunk = '' let currentLine = 0 let chunkStartLine = 0 let chunkIndex = 0 for (let i = 0; i < lines.length; i++) { const line = lines[i] + '\n' // Check if adding this line would exceed chunk size if (currentChunk.length + line.length > this.chunkSize && currentChunk.length > 0) { // Create chunk with overlap from previous chunk const overlap = this.getOverlap(chunks[chunks.length - 1]) const chunkContent = overlap + currentChunk chunks.push({ index: chunkIndex++, content: chunkContent, startLine: chunkStartLine, endLine: i - 1, overlap: overlap }) // Start new chunk with overlap currentChunk = this.getChunkOverlap(currentChunk) + line chunkStartLine = Math.max(0, i - this.getOverlapLines()) currentLine = i } else { currentChunk += line if (currentChunk.length === line.length) { // First line of chunk chunkStartLine = i } currentLine = i } } // Add final chunk if (currentChunk.length > 0) { const overlap = this.getOverlap(chunks[chunks.length - 1]) chunks.push({ index: chunkIndex, content: overlap + currentChunk, startLine: chunkStartLine, endLine: lines.length - 1, overlap: overlap }) } return chunks } private getOverlap(previousChunk?: FileChunk): string { if (!previousChunk) return '' const lines = previousChunk.content.split('\n') const overlapLines = Math.min(this.getOverlapLines(), lines.length) return lines.slice(-overlapLines).join('\n') + (overlapLines > 0 ? '\n' : '') } private getChunkOverlap(chunk: string): string { const lines = chunk.split('\n') const overlapLines = Math.min(this.getOverlapLines(), lines.length) return lines.slice(-overlapLines).join('\n') + (overlapLines > 0 ? '\n' : '') } private getOverlapLines(): number { // Calculate overlap in terms of lines (rough estimate) return Math.floor(this.overlapSize / 50) // Assuming ~50 chars per line } private createChunkAgents(chunkCount: number): VirtualChunkAgent[] { const agents: VirtualChunkAgent[] = [] for (let i = 0; i < chunkCount; i++) { agents.push(new VirtualChunkAgent(`chunk-agent-${i}`, i)) } return agents } private async processChunksInParallel( chunks: FileChunk[], agents: VirtualChunkAgent[], context: ProcessingContext ): Promise<ChunkResult[]> { this.log.info("Processing chunks in parallel", { chunkCount: chunks.length, maxConcurrent: this.maxConcurrentChunks }) const results: ChunkResult[] = [] // Process chunks in batches to limit concurrency for (let i = 0; i < chunks.length; i += this.maxConcurrentChunks) { const chunkBatch = chunks.slice(i, i + this.maxConcurrentChunks) const agentBatch = agents.slice(i, i + this.maxConcurrentChunks) const batchPromises = chunkBatch.map(async (chunk, batchIndex) => { const agent = agentBatch[batchIndex] // Create task for chunk processing const chunkTask: AgentTask = { id: `chunk-${chunk.index}`, type: 'chunk-analysis', data: chunk, context: { ...context, chunkIndex: chunk.index, totalChunks: chunks.length, filePath: context.filePath }, reasoningModes: [ ReasoningMode.ULTRATHINKING, ReasoningMode.ULTRAREASONING, ReasoningMode.HYBRID_REASONING, ReasoningMode.HYBRID_THINKING ] } try { const result = await agent.process(chunkTask) const verification = await this.verifyChunkResult(result, chunk) return { chunkIndex: chunk.index, result: result, verification: verification } } catch (error) { this.log.error("Chunk processing failed", { chunkIndex: chunk.index, error }) // Return error result instead of failing completely return { chunkIndex: chunk.index, result: { agentId: agent.id, agentType: agent.type, taskId: chunkTask.id, reasoningMode: ReasoningMode.ULTRATHINKING, result: { error: 'Processing failed', chunk: chunk.index }, confidence: 0.1, processingTime: 0, errors: [error instanceof Error ? error.message : String(error)] }, verification: { success: false, issues: ['Processing failed'] } } } }) const batchResults = await Promise.all(batchPromises) results.push(...batchResults) this.log.debug("Batch processed", { batchStart: i, batchSize: chunkBatch.length, totalProcessed: results.length }) } return results.sort((a, b) => a.chunkIndex - b.chunkIndex) } private async verifyChunkResult(result: AgentResult, chunk: FileChunk): Promise<any> { // Verification logic for individual chunk results const verification = { success: true, issues: [] as string[], coverage: 0, qualityScore: 0 } // Check if result contains meaningful analysis if (!result.result || typeof result.result !== 'object') { verification.success = false verification.issues.push('Result does not contain analysis data') } // Check confidence level if (result.confidence < 0.3) { verification.issues.push('Low confidence in chunk analysis') } // Check for errors if (result.errors && result.errors.length > 0) { verification.success = false verification.issues.push(...result.errors) } // Calculate coverage (how much of the chunk was analyzed) verification.coverage = this.calculateChunkCoverage(result, chunk) // Calculate quality score verification.qualityScore = this.calculateChunkQuality(result, chunk) return verification } private calculateChunkCoverage(result: AgentResult, chunk: FileChunk): number { // Simple coverage calculation - could be more sophisticated if (!result.result) return 0 const analysis = result.result let coverage = 0 // Check if different aspects were analyzed if (analysis.structure) coverage += 0.3 if (analysis.issues) coverage += 0.3 if (analysis.insights) coverage += 0.2 if (analysis.patterns) coverage += 0.2 return Math.min(1, coverage) } private calculateChunkQuality(result: AgentResult, chunk: FileChunk): number { // Quality assessment based on result depth and confidence const confidence = result.confidence const processingTime = result.processingTime || 0 // Penalize very fast processing (might indicate superficial analysis) const timeScore = processingTime > 100 ? 1 : processingTime / 100 return (confidence * 0.7 + timeScore * 0.3) } private async synthesizeChunkResults(chunkResults: ChunkResult[], originalContent: string): Promise<any> { this.log.info("Synthesizing chunk results", { chunkCount: chunkResults.length }) const synthesis = { overview: this.generateOverview(chunkResults, originalContent), combinedInsights: this.combineInsights(chunkResults), structuralAnalysis: this.synthesizeStructuralAnalysis(chunkResults), issueAggregation: this.aggregateIssues(chunkResults), patterns: this.identifyGlobalPatterns(chunkResults), recommendations: this.generateRecommendations(chunkResults), confidence: this.calculateSynthesisConfidence(chunkResults), coverage: this.calculateTotalCoverage(chunkResults, originalContent) } return synthesis } private generateOverview(chunkResults: ChunkResult[], originalContent: string): any { const totalLines = originalContent.split('\n').length const totalChars = originalContent.length const successfulChunks = chunkResults.filter(r => r.verification.success).length return { fileStats: { totalLines, totalCharacters: totalChars, language: this.detectLanguage(originalContent), complexity: this.assessFileComplexity(originalContent) }, processingStats: { totalChunks: chunkResults.length, successfulChunks, failedChunks: chunkResults.length - successfulChunks, averageConfidence: this.calculateAverageConfidence(chunkResults), totalProcessingTime: chunkResults.reduce((sum, r) => sum + (r.result.processingTime || 0), 0) } } } private detectLanguage(content: string): string { // Simple language detection based on file content if (content.includes('function') && content.includes('const')) return 'javascript' if (content.includes('def ') && content.includes('import ')) return 'python' if (content.includes('public class') && content.includes('import ')) return 'java' if (content.includes('#include') && content.includes('int main')) return 'c++' if (content.includes('fn ') && content.includes('use ')) return 'rust' return 'unknown' } private assessFileComplexity(content: string): string { const lines = content.split('\n').length const functions = (content.match(/function\s+\w+|def\s+\w+|fn\s+\w+/g) || []).length const classes = (content.match(/class\s+\w+|struct\s+\w+/g) || []).length const complexityScore = (lines / 100) + (functions / 5) + (classes / 2) if (complexityScore > 10) return 'high' if (complexityScore > 5) return 'medium' return 'low' } private calculateAverageConfidence(chunkResults: ChunkResult[]): number { if (chunkResults.length === 0) return 0 const totalConfidence = chunkResults.reduce((sum, r) => sum + r.result.confidence, 0) return totalConfidence / chunkResults.length } private combineInsights(chunkResults: ChunkResult[]): string[] { const allInsights: string[] = [] chunkResults.forEach(chunkResult => { const result = chunkResult.result.result if (result && result.insights) { if (Array.isArray(result.insights)) { allInsights.push(...result.insights) } else if (typeof result.insights === 'string') { allInsights.push(result.insights) } } }) // Deduplicate and categorize insights const uniqueInsights = Array.from(new Set(allInsights)) return uniqueInsights.slice(0, 20) // Limit to top 20 insights } private synthesizeStructuralAnalysis(chunkResults: ChunkResult[]): any { const structures = chunkResults.map(r => r.result.result?.structure).filter(Boolean) if (structures.length === 0) { return { error: 'No structural analysis available' } } // Combine structural information from all chunks const combined = { totalFunctions: 0, totalClasses: 0, totalLines: 0, imports: new Set<string>(), complexity: 0 } structures.forEach(structure => { combined.totalFunctions += structure.functions?.length || 0 combined.totalClasses += structure.classes?.length || 0 combined.totalLines += structure.lineCount || 0 if (structure.imports) { structure.imports.forEach((imp: string) => combined.imports.add(imp)) } combined.complexity += structure.complexity || 0 }) return { ...combined, imports: Array.from(combined.imports), averageComplexity: combined.complexity / structures.length } } private aggregateIssues(chunkResults: ChunkResult[]): any { const allIssues: any[] = [] chunkResults.forEach((chunkResult, index) => { const result = chunkResult.result.result // Collect issues from result if (result && result.issues) { const issues = Array.isArray(result.issues) ? result.issues : [result.issues] issues.forEach(issue => { allIssues.push({ ...issue, chunkIndex: index, source: 'chunk-analysis' }) }) } // Collect errors if (chunkResult.result.errors) { chunkResult.result.errors.forEach(error => { allIssues.push({ type: 'error', severity: 'high', message: error, chunkIndex: index, source: 'processing-error' }) }) } // Collect verification issues if (chunkResult.verification.issues) { chunkResult.verification.issues.forEach(issue => { allIssues.push({ type: 'verification', severity: 'medium', message: issue, chunkIndex: index, source: 'verification' }) }) } }) // Categorize issues const categorized = { critical: allIssues.filter(i => i.severity === 'critical'), high: allIssues.filter(i => i.severity === 'high'), medium: allIssues.filter(i => i.severity === 'medium'), low: allIssues.filter(i => i.severity === 'low'), total: allIssues.length } return categorized } private identifyGlobalPatterns(chunkResults: ChunkResult[]): any[] { const patterns: any[] = [] // Look for patterns that appear across multiple chunks const chunkPatterns = chunkResults.map(r => r.result.result?.patterns).filter(Boolean) if (chunkPatterns.length === 0) return patterns // Count pattern occurrences across chunks const patternCounts = new Map<string, number>() chunkPatterns.forEach(chunkPatternSet => { if (Array.isArray(chunkPatternSet)) { chunkPatternSet.forEach(pattern => { const key = pattern.type || pattern.name || String(pattern) patternCounts.set(key, (patternCounts.get(key) || 0) + 1) }) } }) // Return patterns that appear in multiple chunks patternCounts.forEach((count, patternType) => { if (count > 1) { patterns.push({ type: patternType, occurrences: count, frequency: count / chunkResults.length, scope: 'global' }) } }) return patterns } private generateRecommendations(chunkResults: ChunkResult[]): string[] { const recommendations: string[] = [] // Analyze overall quality const avgConfidence = this.calculateAverageConfidence(chunkResults) if (avgConfidence < 0.6) { recommendations.push('Consider running additional analysis passes to improve confidence') } // Check for failed chunks const failedChunks = chunkResults.filter(r => !r.verification.success).length if (failedChunks > 0) { recommendations.push(`Re-process ${failedChunks} failed chunks with different parameters`) } // Check for high issue density const totalIssues = chunkResults.reduce((sum, r) => sum + (r.result.errors?.length || 0) + (r.verification.issues?.length || 0), 0 ) if (totalIssues > chunkResults.length * 2) { recommendations.push('High issue density detected - consider refactoring or detailed review') } // Performance recommendations const avgProcessingTime = chunkResults.reduce((sum, r) => sum + (r.result.processingTime || 0), 0 ) / chunkResults.length if (avgProcessingTime > 5000) { // 5 seconds recommendations.push('Consider optimizing chunk size for better performance') } return recommendations } private calculateSynthesisConfidence(chunkResults: ChunkResult[]): number { if (chunkResults.length === 0) return 0 const successfulChunks = chunkResults.filter(r => r.verification.success).length const avgChunkConfidence = this.calculateAverageConfidence(chunkResults) // Confidence based on success rate and individual chunk confidence const successRate = successfulChunks / chunkResults.length return (successRate * 0.6 + avgChunkConfidence * 0.4) } private calculateTotalCoverage(chunkResults: ChunkResult[], originalContent: string): number { const totalChunks = chunkResults.length const successfulChunks = chunkResults.filter(r => r.verification.success).length // Coverage based on successful chunk processing return successfulChunks / totalChunks } private async verifyAnalysis(synthesizedResult: any, originalContent: string, chunks: FileChunk[]): Promise<any> { this.log.info("Verifying synthesized analysis") const verification = { completeness: this.verifyCompleteness(synthesizedResult, chunks), consistency: this.verifyConsistency(synthesizedResult), accuracy: this.verifyAccuracy(synthesizedResult, originalContent), recommendations: this.generateVerificationRecommendations(synthesizedResult) } return verification } private verifyCompleteness(synthesizedResult: any, chunks: FileChunk[]): any { const completeness = { score: 0, issues: [] as string[], coverage: 0 } // Check if all chunks were processed const processedChunks = synthesizedResult.overview?.processingStats?.successfulChunks || 0 const totalChunks = chunks.length completeness.coverage = processedChunks / totalChunks if (completeness.coverage < 0.9) { completeness.issues.push(`Only ${Math.round(completeness.coverage * 100)}% of chunks processed successfully`) } // Check if key analysis components are present const requiredComponents = ['overview', 'combinedInsights', 'structuralAnalysis', 'issueAggregation'] const presentComponents = requiredComponents.filter(comp => synthesizedResult[comp]) completeness.score = presentComponents.length / requiredComponents.length const missingComponents = requiredComponents.filter(comp => !synthesizedResult[comp]) if (missingComponents.length > 0) { completeness.issues.push(`Missing analysis components: ${missingComponents.join(', ')}`) } return completeness } private verifyConsistency(synthesizedResult: any): any { const consistency = { score: 1, issues: [] as string[] } // Check for internal consistency in the results const overview = synthesizedResult.overview const structural = synthesizedResult.structuralAnalysis if (overview && structural) { // Verify structural data consistency if (overview.fileStats && structural.totalLines) { const lineDifference = Math.abs(overview.fileStats.totalLines - structural.totalLines) const relativeDifference = lineDifference / overview.fileStats.totalLines if (relativeDifference > 0.1) { // 10% difference threshold consistency.issues.push('Inconsistent line count between overview and structural analysis') consistency.score -= 0.2 } } } return consistency } private verifyAccuracy(synthesizedResult: any, originalContent: string): any { const accuracy = { score: 0.8, // Default accuracy assumption issues: [] as string[] } // Basic accuracy checks const detectedLanguage = synthesizedResult.overview?.fileStats?.language const actualLanguage = this.detectLanguage(originalContent) if (detectedLanguage !== actualLanguage) { accuracy.issues.push(`Language detection mismatch: detected ${detectedLanguage}, expected ${actualLanguage}`) accuracy.score -= 0.1 } // Check if insights make sense for the file type const insights = synthesizedResult.combinedInsights || [] if (insights.length === 0) { accuracy.issues.push('No insights generated - analysis may be incomplete') accuracy.score -= 0.2 } return accuracy } private generateVerificationRecommendations(synthesizedResult: any): string[] { const recommendations: string[] = [] const confidence = synthesizedResult.confidence if (confidence < 0.7) { recommendations.push('Low confidence in results - consider re-processing with different parameters') } const coverage = synthesizedResult.coverage if (coverage < 0.9) { recommendations.push('Incomplete coverage - some parts of the file may not have been analyzed') } const totalIssues = synthesizedResult.issueAggregation?.total || 0 if (totalIssues > 50) { recommendations.push('High number of issues detected - prioritize addressing critical and high-severity items') } return recommendations } private calculateOverallConfidence(synthesizedResult: any, verificationResult: any): number { const synthesisConfidence = synthesizedResult.confidence || 0.5 const completenessScore = verificationResult.completeness?.score || 0.5 const consistencyScore = verificationResult.consistency?.score || 0.5 const accuracyScore = verificationResult.accuracy?.score || 0.5 // Weighted combination of confidence factors return ( synthesisConfidence * 0.4 + completenessScore * 0.3 + consistencyScore * 0.2 + accuracyScore * 0.1 ) } private analyzeFileStructure(content: string): any { // Basic file structure analysis const lines = content.split('\n') const functions = content.match(/function\s+\w+|def\s+\w+/g) || [] const classes = content.match(/class\s+\w+/g) || [] const imports = content.match(/import\s+.*|from\s+.*import|#include/g) || [] return { lineCount: lines.length, functions: functions.map(f => f.trim()), classes: classes.map(c => c.trim()), imports: imports.map(i => i.trim()), complexity: this.calculateBasicComplexity(content) } } private calculateBasicComplexity(content: string): number { // Simple complexity calculation const decisions = (content.match(/\b(if|else|while|for|switch|case|catch)\b/g) || []).length const functions = (content.match(/function\s+\w+|def\s+\w+/g) || []).length return decisions + functions } } // Virtual agent for chunk processing class VirtualChunkAgent implements IAgent { readonly id: string readonly type = AgentType.FILE_PROCESSOR readonly reasoningModes = [ ReasoningMode.ULTRATHINKING, ReasoningMode.ULTRAREASONING, ReasoningMode.HYBRID_REASONING, ReasoningMode.HYBRID_THINKING ] readonly capabilities = ['chunk-processing', 'code-analysis', 'pattern-recognition'] private chunkIndex: number private log = Log.create({ service: `chunk-agent` }) constructor(id: string, chunkIndex: number) { this.id = id this.chunkIndex = chunkIndex } async process(task: AgentTask): Promise<AgentResult> { const startTime = Date.now() try { const chunk = task.data as FileChunk this.log.debug("Processing chunk", { chunkIndex: chunk.index, chunkSize: chunk.content.length, reasoningModes: task.reasoningModes }) // Simulate sophisticated analysis of the chunk const analysis = await this.analyzeChunk(chunk, task.context) const processingTime = Date.now() - startTime return { agentId: this.id, agentType: this.type, taskId: task.id, reasoningMode: ReasoningMode.ULTRATHINKING, // Primary mode for this result result: analysis, confidence: this.calculateConfidence(analysis, chunk), processingTime } } catch (error) { this.log.error("Chunk processing failed", { error }) return { agentId: this.id, agentType: this.type, taskId: task.id, reasoningMode: ReasoningMode.ULTRATHINKING, result: { error: 'Processing failed' }, confidence: 0.1, processingTime: Date.now() - startTime, errors: [error instanceof Error ? error.message : String(error)] } } } private async analyzeChunk(chunk: FileChunk, context: any): Promise<any> { const content = chunk.content // Multi-faceted analysis of the chunk const analysis = { structure: this.analyzeChunkStructure(content), patterns: this.identifyPatterns(content), issues: this.detectIssues(content), insights: this.generateInsights(content, chunk), complexity: this.assessComplexity(content), quality: this.assessQuality(content) } return analysis } private analyzeChunkStructure(content: string): any { const lines = content.split('\n') const functions = content.match(/function\s+\w+|def\s+\w+|fn\s+\w+/g) || [] const classes = content.match(/class\s+\w+|struct\s+\w+/g) || [] const variables = content.match(/(?:let|const|var|int|string)\s+\w+/g) || [] return { lineCount: lines.length, functions: functions.length, classes: classes.length, variables: variables.length, codeLines: lines.filter(line => line.trim() && !line.trim().startsWith('//')).length, commentLines: lines.filter(line => line.trim().startsWith('//')).length } } private identifyPatterns(content: string): any[] { const patterns = [] // Common code patterns if (content.includes('.map(') || content.includes('.filter(')) { patterns.push({ type: 'functional_programming', confidence: 0.8 }) } if (content.includes('async') && content.includes('await')) { patterns.push({ type: 'async_await', confidence: 0.9 }) } if (content.includes('try') && content.includes('catch')) { patterns.push({ type: 'error_handling', confidence: 0.9 }) } if (content.includes('class') && content.includes('extends')) { patterns.push({ type: 'inheritance', confidence: 0.8 }) } return patterns } private detectIssues(content: string): any[] { const issues = [] // Basic issue detection if (content.includes('console.log')) { issues.push({ type: 'code_quality', severity: 'low', message: 'Debug console.log statements found' }) } if (content.includes('// TODO') || content.includes('// FIXME')) { issues.push({ type: 'maintenance', severity: 'medium', message: 'TODO/FIXME comments indicate incomplete work' }) } if (content.includes('eval(')) { issues.push({ type: 'security', severity: 'high', message: 'Use of eval() poses security risks' }) } // Check for long lines const longLines = content.split('\n').filter(line => line.length > 120) if (longLines.length > 0) { issues.push({ type: 'readability', severity: 'low', message: `${longLines.length} lines exceed 120 characters` }) } return issues } private generateInsights(content: string, chunk: FileChunk): string[] { const insights = [] const structure = this.analyzeChunkStructure(content) if (structure.functions > 5) { insights.push('High function density in this section') } if (structure.commentLines / structure.codeLines > 0.3) { insights.push('Well-documented code section') } if (structure.commentLines / structure.codeLines < 0.1) { insights.push('Limited documentation in this section') } if (chunk.index === 0) { insights.push('File beginning - likely contains imports and initial setup') } return insights } private assessComplexity(content: string): number { const decisions = (content.match(/\b(if|else|while|for|switch|case)\b/g) || []).length const nesting = this.calculateNestingDepth(content) const functions = (content.match(/function\s+\w+|def\s+\w+/g) || []).length return (decisions * 0.5 + nesting * 0.3 + functions * 0.2) / 10 } private calculateNestingDepth(content: string): number { let maxDepth = 0 let currentDepth = 0 for (const char of content) { if (char === '{') { currentDepth++ maxDepth = Math.max(maxDepth, currentDepth) } else if (char === '}') { currentDepth-- } } return maxDepth } private assessQuality(content: string): number { let score = 1.0 // Deduct for potential quality issues if (content.includes('console.log')) score -= 0.1 if (content.includes('// TODO')) score -= 0.1 if (content.includes('eval(')) score -= 0.3 // Add for good practices if (content.includes('try') && content.includes('catch')) score += 0.1 if (content.includes('const ')) score += 0.05 return Math.max(0, Math.min(1, score)) } private calculateConfidence(analysis: any, chunk: FileChunk): number { let confidence = 0.7 // Base confidence // Adjust based on analysis completeness if (analysis.structure) confidence += 0.1 if (analysis.patterns && analysis.patterns.length > 0) confidence += 0.1 if (analysis.insights && analysis.insights.length > 0) confidence += 0.1 // Adjust based on chunk characteristics if (chunk.content.length < 500) confidence -= 0.1 // Very small chunks if (chunk.content.length > 10000) confidence -= 0.1 // Very large chunks return Math.max(0.1, Math.min(1, confidence)) } async collaborate(agents: IAgent[], context: SharedContext): Promise<void> { // Simple collaboration - could be enhanced this.log.debug("Collaborating with other agents", { agentCount: agents.length, sessionId: context.sessionId }) } async isHealthy(): Promise<boolean> { return true // Virtual agents are always healthy } async dispose(): Promise<void> { this.log.debug("Disposing chunk agent", { chunkIndex: this.chunkIndex }) } }