abyss-ai
Version:
Autonomous AI coding agent - enhanced OpenCode with autonomous capabilities
1,034 lines (837 loc) • 34.2 kB
text/typescript
import { Log } from "../../util/log"
import {
IAgent,
AgentTask,
AgentResult,
ProcessingContext,
ProcessingResult,
FileChunk,
ChunkResult,
ReasoningMode
} from "../types/agent"
export class LargeFileProcessor {
private log = Log.create({ service: "large-file-processor" })
private chunkSize: number = 5000 // characters per chunk
private overlapSize: number = 200 // overlap between chunks
private maxConcurrentChunks: number = 4 // parallel processing limit
constructor(
chunkSize: number = 5000,
overlapSize: number = 200,
maxConcurrentChunks: number = 4
) {
this.chunkSize = chunkSize
this.overlapSize = overlapSize
this.maxConcurrentChunks = maxConcurrentChunks
this.log.info("LargeFileProcessor initialized", {
chunkSize: this.chunkSize,
overlapSize: this.overlapSize,
maxConcurrentChunks: this.maxConcurrentChunks
})
}
async processLargeFile(filePath: string, context: ProcessingContext): Promise<ProcessingResult> {
this.log.info("Processing large file", { filePath, context })
const startTime = Date.now()
try {
// Read file content
const fileContent = await this.readFile(filePath)
if (fileContent.length <= this.chunkSize) {
this.log.info("File is small enough for direct processing")
return await this.processSmallFile(fileContent, context)
}
// Create chunks with overlap
const chunks = this.chunkFile(fileContent)
this.log.info("File chunked", {
totalChunks: chunks.length,
avgChunkSize: Math.round(chunks.reduce((sum, c) => sum + c.content.length, 0) / chunks.length)
})
// Create sub-agents for each chunk (virtual agents using provided processing logic)
const chunkAgents = this.createChunkAgents(chunks.length)
// Process chunks in parallel with all reasoning modes
const chunkResults = await this.processChunksInParallel(chunks, chunkAgents, context)
// Synthesize results across chunks
const synthesizedResult = await this.synthesizeChunkResults(chunkResults, fileContent)
// Verify progress and ensure no details missed
const verificationResult = await this.verifyAnalysis(synthesizedResult, fileContent, chunks)
const processingTime = Date.now() - startTime
return {
type: 'large-file-processing',
result: synthesizedResult,
verification: verificationResult,
chunksProcessed: chunks.length,
confidence: this.calculateOverallConfidence(synthesizedResult, verificationResult),
processingTime
}
} catch (error) {
this.log.error("Large file processing failed", { filePath, error })
throw error
}
}
private async readFile(filePath: string): Promise<string> {
try {
// Use Bun's file API for reading
const file = Bun.file(filePath)
const content = await file.text()
this.log.debug("File read successfully", {
filePath,
size: content.length,
lines: content.split('\n').length
})
return content
} catch (error) {
this.log.error("Failed to read file", { filePath, error })
throw new Error(`Cannot read file: ${filePath}`)
}
}
private async processSmallFile(content: string, context: ProcessingContext): Promise<ProcessingResult> {
// For small files, process directly without chunking
return {
type: 'direct-processing',
result: {
content,
analysis: 'File processed directly without chunking',
insights: ['File size within direct processing limit'],
structure: this.analyzeFileStructure(content)
},
confidence: 0.9,
processingTime: 0
}
}
private chunkFile(content: string): FileChunk[] {
const chunks: FileChunk[] = []
const lines = content.split('\n')
let currentChunk = ''
let currentLine = 0
let chunkStartLine = 0
let chunkIndex = 0
for (let i = 0; i < lines.length; i++) {
const line = lines[i] + '\n'
// Check if adding this line would exceed chunk size
if (currentChunk.length + line.length > this.chunkSize && currentChunk.length > 0) {
// Create chunk with overlap from previous chunk
const overlap = this.getOverlap(chunks[chunks.length - 1])
const chunkContent = overlap + currentChunk
chunks.push({
index: chunkIndex++,
content: chunkContent,
startLine: chunkStartLine,
endLine: i - 1,
overlap: overlap
})
// Start new chunk with overlap
currentChunk = this.getChunkOverlap(currentChunk) + line
chunkStartLine = Math.max(0, i - this.getOverlapLines())
currentLine = i
} else {
currentChunk += line
if (currentChunk.length === line.length) {
// First line of chunk
chunkStartLine = i
}
currentLine = i
}
}
// Add final chunk
if (currentChunk.length > 0) {
const overlap = this.getOverlap(chunks[chunks.length - 1])
chunks.push({
index: chunkIndex,
content: overlap + currentChunk,
startLine: chunkStartLine,
endLine: lines.length - 1,
overlap: overlap
})
}
return chunks
}
private getOverlap(previousChunk?: FileChunk): string {
if (!previousChunk) return ''
const lines = previousChunk.content.split('\n')
const overlapLines = Math.min(this.getOverlapLines(), lines.length)
return lines.slice(-overlapLines).join('\n') + (overlapLines > 0 ? '\n' : '')
}
private getChunkOverlap(chunk: string): string {
const lines = chunk.split('\n')
const overlapLines = Math.min(this.getOverlapLines(), lines.length)
return lines.slice(-overlapLines).join('\n') + (overlapLines > 0 ? '\n' : '')
}
private getOverlapLines(): number {
// Calculate overlap in terms of lines (rough estimate)
return Math.floor(this.overlapSize / 50) // Assuming ~50 chars per line
}
private createChunkAgents(chunkCount: number): VirtualChunkAgent[] {
const agents: VirtualChunkAgent[] = []
for (let i = 0; i < chunkCount; i++) {
agents.push(new VirtualChunkAgent(`chunk-agent-${i}`, i))
}
return agents
}
private async processChunksInParallel(
chunks: FileChunk[],
agents: VirtualChunkAgent[],
context: ProcessingContext
): Promise<ChunkResult[]> {
this.log.info("Processing chunks in parallel", {
chunkCount: chunks.length,
maxConcurrent: this.maxConcurrentChunks
})
const results: ChunkResult[] = []
// Process chunks in batches to limit concurrency
for (let i = 0; i < chunks.length; i += this.maxConcurrentChunks) {
const chunkBatch = chunks.slice(i, i + this.maxConcurrentChunks)
const agentBatch = agents.slice(i, i + this.maxConcurrentChunks)
const batchPromises = chunkBatch.map(async (chunk, batchIndex) => {
const agent = agentBatch[batchIndex]
// Create task for chunk processing
const chunkTask: AgentTask = {
id: `chunk-${chunk.index}`,
type: 'chunk-analysis',
data: chunk,
context: {
...context,
chunkIndex: chunk.index,
totalChunks: chunks.length,
filePath: context.filePath
},
reasoningModes: [
ReasoningMode.ULTRATHINKING,
ReasoningMode.ULTRAREASONING,
ReasoningMode.HYBRID_REASONING,
ReasoningMode.HYBRID_THINKING
]
}
try {
const result = await agent.process(chunkTask)
const verification = await this.verifyChunkResult(result, chunk)
return {
chunkIndex: chunk.index,
result: result,
verification: verification
}
} catch (error) {
this.log.error("Chunk processing failed", {
chunkIndex: chunk.index,
error
})
// Return error result instead of failing completely
return {
chunkIndex: chunk.index,
result: {
agentId: agent.id,
agentType: agent.type,
taskId: chunkTask.id,
reasoningMode: ReasoningMode.ULTRATHINKING,
result: { error: 'Processing failed', chunk: chunk.index },
confidence: 0.1,
processingTime: 0,
errors: [error instanceof Error ? error.message : String(error)]
},
verification: { success: false, issues: ['Processing failed'] }
}
}
})
const batchResults = await Promise.all(batchPromises)
results.push(...batchResults)
this.log.debug("Batch processed", {
batchStart: i,
batchSize: chunkBatch.length,
totalProcessed: results.length
})
}
return results.sort((a, b) => a.chunkIndex - b.chunkIndex)
}
private async verifyChunkResult(result: AgentResult, chunk: FileChunk): Promise<any> {
// Verification logic for individual chunk results
const verification = {
success: true,
issues: [] as string[],
coverage: 0,
qualityScore: 0
}
// Check if result contains meaningful analysis
if (!result.result || typeof result.result !== 'object') {
verification.success = false
verification.issues.push('Result does not contain analysis data')
}
// Check confidence level
if (result.confidence < 0.3) {
verification.issues.push('Low confidence in chunk analysis')
}
// Check for errors
if (result.errors && result.errors.length > 0) {
verification.success = false
verification.issues.push(...result.errors)
}
// Calculate coverage (how much of the chunk was analyzed)
verification.coverage = this.calculateChunkCoverage(result, chunk)
// Calculate quality score
verification.qualityScore = this.calculateChunkQuality(result, chunk)
return verification
}
private calculateChunkCoverage(result: AgentResult, chunk: FileChunk): number {
// Simple coverage calculation - could be more sophisticated
if (!result.result) return 0
const analysis = result.result
let coverage = 0
// Check if different aspects were analyzed
if (analysis.structure) coverage += 0.3
if (analysis.issues) coverage += 0.3
if (analysis.insights) coverage += 0.2
if (analysis.patterns) coverage += 0.2
return Math.min(1, coverage)
}
private calculateChunkQuality(result: AgentResult, chunk: FileChunk): number {
// Quality assessment based on result depth and confidence
const confidence = result.confidence
const processingTime = result.processingTime || 0
// Penalize very fast processing (might indicate superficial analysis)
const timeScore = processingTime > 100 ? 1 : processingTime / 100
return (confidence * 0.7 + timeScore * 0.3)
}
private async synthesizeChunkResults(chunkResults: ChunkResult[], originalContent: string): Promise<any> {
this.log.info("Synthesizing chunk results", { chunkCount: chunkResults.length })
const synthesis = {
overview: this.generateOverview(chunkResults, originalContent),
combinedInsights: this.combineInsights(chunkResults),
structuralAnalysis: this.synthesizeStructuralAnalysis(chunkResults),
issueAggregation: this.aggregateIssues(chunkResults),
patterns: this.identifyGlobalPatterns(chunkResults),
recommendations: this.generateRecommendations(chunkResults),
confidence: this.calculateSynthesisConfidence(chunkResults),
coverage: this.calculateTotalCoverage(chunkResults, originalContent)
}
return synthesis
}
private generateOverview(chunkResults: ChunkResult[], originalContent: string): any {
const totalLines = originalContent.split('\n').length
const totalChars = originalContent.length
const successfulChunks = chunkResults.filter(r => r.verification.success).length
return {
fileStats: {
totalLines,
totalCharacters: totalChars,
language: this.detectLanguage(originalContent),
complexity: this.assessFileComplexity(originalContent)
},
processingStats: {
totalChunks: chunkResults.length,
successfulChunks,
failedChunks: chunkResults.length - successfulChunks,
averageConfidence: this.calculateAverageConfidence(chunkResults),
totalProcessingTime: chunkResults.reduce((sum, r) => sum + (r.result.processingTime || 0), 0)
}
}
}
private detectLanguage(content: string): string {
// Simple language detection based on file content
if (content.includes('function') && content.includes('const')) return 'javascript'
if (content.includes('def ') && content.includes('import ')) return 'python'
if (content.includes('public class') && content.includes('import ')) return 'java'
if (content.includes('#include') && content.includes('int main')) return 'c++'
if (content.includes('fn ') && content.includes('use ')) return 'rust'
return 'unknown'
}
private assessFileComplexity(content: string): string {
const lines = content.split('\n').length
const functions = (content.match(/function\s+\w+|def\s+\w+|fn\s+\w+/g) || []).length
const classes = (content.match(/class\s+\w+|struct\s+\w+/g) || []).length
const complexityScore = (lines / 100) + (functions / 5) + (classes / 2)
if (complexityScore > 10) return 'high'
if (complexityScore > 5) return 'medium'
return 'low'
}
private calculateAverageConfidence(chunkResults: ChunkResult[]): number {
if (chunkResults.length === 0) return 0
const totalConfidence = chunkResults.reduce((sum, r) => sum + r.result.confidence, 0)
return totalConfidence / chunkResults.length
}
private combineInsights(chunkResults: ChunkResult[]): string[] {
const allInsights: string[] = []
chunkResults.forEach(chunkResult => {
const result = chunkResult.result.result
if (result && result.insights) {
if (Array.isArray(result.insights)) {
allInsights.push(...result.insights)
} else if (typeof result.insights === 'string') {
allInsights.push(result.insights)
}
}
})
// Deduplicate and categorize insights
const uniqueInsights = Array.from(new Set(allInsights))
return uniqueInsights.slice(0, 20) // Limit to top 20 insights
}
private synthesizeStructuralAnalysis(chunkResults: ChunkResult[]): any {
const structures = chunkResults.map(r => r.result.result?.structure).filter(Boolean)
if (structures.length === 0) {
return { error: 'No structural analysis available' }
}
// Combine structural information from all chunks
const combined = {
totalFunctions: 0,
totalClasses: 0,
totalLines: 0,
imports: new Set<string>(),
complexity: 0
}
structures.forEach(structure => {
combined.totalFunctions += structure.functions?.length || 0
combined.totalClasses += structure.classes?.length || 0
combined.totalLines += structure.lineCount || 0
if (structure.imports) {
structure.imports.forEach((imp: string) => combined.imports.add(imp))
}
combined.complexity += structure.complexity || 0
})
return {
...combined,
imports: Array.from(combined.imports),
averageComplexity: combined.complexity / structures.length
}
}
private aggregateIssues(chunkResults: ChunkResult[]): any {
const allIssues: any[] = []
chunkResults.forEach((chunkResult, index) => {
const result = chunkResult.result.result
// Collect issues from result
if (result && result.issues) {
const issues = Array.isArray(result.issues) ? result.issues : [result.issues]
issues.forEach(issue => {
allIssues.push({
...issue,
chunkIndex: index,
source: 'chunk-analysis'
})
})
}
// Collect errors
if (chunkResult.result.errors) {
chunkResult.result.errors.forEach(error => {
allIssues.push({
type: 'error',
severity: 'high',
message: error,
chunkIndex: index,
source: 'processing-error'
})
})
}
// Collect verification issues
if (chunkResult.verification.issues) {
chunkResult.verification.issues.forEach(issue => {
allIssues.push({
type: 'verification',
severity: 'medium',
message: issue,
chunkIndex: index,
source: 'verification'
})
})
}
})
// Categorize issues
const categorized = {
critical: allIssues.filter(i => i.severity === 'critical'),
high: allIssues.filter(i => i.severity === 'high'),
medium: allIssues.filter(i => i.severity === 'medium'),
low: allIssues.filter(i => i.severity === 'low'),
total: allIssues.length
}
return categorized
}
private identifyGlobalPatterns(chunkResults: ChunkResult[]): any[] {
const patterns: any[] = []
// Look for patterns that appear across multiple chunks
const chunkPatterns = chunkResults.map(r => r.result.result?.patterns).filter(Boolean)
if (chunkPatterns.length === 0) return patterns
// Count pattern occurrences across chunks
const patternCounts = new Map<string, number>()
chunkPatterns.forEach(chunkPatternSet => {
if (Array.isArray(chunkPatternSet)) {
chunkPatternSet.forEach(pattern => {
const key = pattern.type || pattern.name || String(pattern)
patternCounts.set(key, (patternCounts.get(key) || 0) + 1)
})
}
})
// Return patterns that appear in multiple chunks
patternCounts.forEach((count, patternType) => {
if (count > 1) {
patterns.push({
type: patternType,
occurrences: count,
frequency: count / chunkResults.length,
scope: 'global'
})
}
})
return patterns
}
private generateRecommendations(chunkResults: ChunkResult[]): string[] {
const recommendations: string[] = []
// Analyze overall quality
const avgConfidence = this.calculateAverageConfidence(chunkResults)
if (avgConfidence < 0.6) {
recommendations.push('Consider running additional analysis passes to improve confidence')
}
// Check for failed chunks
const failedChunks = chunkResults.filter(r => !r.verification.success).length
if (failedChunks > 0) {
recommendations.push(`Re-process ${failedChunks} failed chunks with different parameters`)
}
// Check for high issue density
const totalIssues = chunkResults.reduce((sum, r) =>
sum + (r.result.errors?.length || 0) + (r.verification.issues?.length || 0), 0
)
if (totalIssues > chunkResults.length * 2) {
recommendations.push('High issue density detected - consider refactoring or detailed review')
}
// Performance recommendations
const avgProcessingTime = chunkResults.reduce((sum, r) =>
sum + (r.result.processingTime || 0), 0
) / chunkResults.length
if (avgProcessingTime > 5000) { // 5 seconds
recommendations.push('Consider optimizing chunk size for better performance')
}
return recommendations
}
private calculateSynthesisConfidence(chunkResults: ChunkResult[]): number {
if (chunkResults.length === 0) return 0
const successfulChunks = chunkResults.filter(r => r.verification.success).length
const avgChunkConfidence = this.calculateAverageConfidence(chunkResults)
// Confidence based on success rate and individual chunk confidence
const successRate = successfulChunks / chunkResults.length
return (successRate * 0.6 + avgChunkConfidence * 0.4)
}
private calculateTotalCoverage(chunkResults: ChunkResult[], originalContent: string): number {
const totalChunks = chunkResults.length
const successfulChunks = chunkResults.filter(r => r.verification.success).length
// Coverage based on successful chunk processing
return successfulChunks / totalChunks
}
private async verifyAnalysis(synthesizedResult: any, originalContent: string, chunks: FileChunk[]): Promise<any> {
this.log.info("Verifying synthesized analysis")
const verification = {
completeness: this.verifyCompleteness(synthesizedResult, chunks),
consistency: this.verifyConsistency(synthesizedResult),
accuracy: this.verifyAccuracy(synthesizedResult, originalContent),
recommendations: this.generateVerificationRecommendations(synthesizedResult)
}
return verification
}
private verifyCompleteness(synthesizedResult: any, chunks: FileChunk[]): any {
const completeness = {
score: 0,
issues: [] as string[],
coverage: 0
}
// Check if all chunks were processed
const processedChunks = synthesizedResult.overview?.processingStats?.successfulChunks || 0
const totalChunks = chunks.length
completeness.coverage = processedChunks / totalChunks
if (completeness.coverage < 0.9) {
completeness.issues.push(`Only ${Math.round(completeness.coverage * 100)}% of chunks processed successfully`)
}
// Check if key analysis components are present
const requiredComponents = ['overview', 'combinedInsights', 'structuralAnalysis', 'issueAggregation']
const presentComponents = requiredComponents.filter(comp => synthesizedResult[comp])
completeness.score = presentComponents.length / requiredComponents.length
const missingComponents = requiredComponents.filter(comp => !synthesizedResult[comp])
if (missingComponents.length > 0) {
completeness.issues.push(`Missing analysis components: ${missingComponents.join(', ')}`)
}
return completeness
}
private verifyConsistency(synthesizedResult: any): any {
const consistency = {
score: 1,
issues: [] as string[]
}
// Check for internal consistency in the results
const overview = synthesizedResult.overview
const structural = synthesizedResult.structuralAnalysis
if (overview && structural) {
// Verify structural data consistency
if (overview.fileStats && structural.totalLines) {
const lineDifference = Math.abs(overview.fileStats.totalLines - structural.totalLines)
const relativeDifference = lineDifference / overview.fileStats.totalLines
if (relativeDifference > 0.1) { // 10% difference threshold
consistency.issues.push('Inconsistent line count between overview and structural analysis')
consistency.score -= 0.2
}
}
}
return consistency
}
private verifyAccuracy(synthesizedResult: any, originalContent: string): any {
const accuracy = {
score: 0.8, // Default accuracy assumption
issues: [] as string[]
}
// Basic accuracy checks
const detectedLanguage = synthesizedResult.overview?.fileStats?.language
const actualLanguage = this.detectLanguage(originalContent)
if (detectedLanguage !== actualLanguage) {
accuracy.issues.push(`Language detection mismatch: detected ${detectedLanguage}, expected ${actualLanguage}`)
accuracy.score -= 0.1
}
// Check if insights make sense for the file type
const insights = synthesizedResult.combinedInsights || []
if (insights.length === 0) {
accuracy.issues.push('No insights generated - analysis may be incomplete')
accuracy.score -= 0.2
}
return accuracy
}
private generateVerificationRecommendations(synthesizedResult: any): string[] {
const recommendations: string[] = []
const confidence = synthesizedResult.confidence
if (confidence < 0.7) {
recommendations.push('Low confidence in results - consider re-processing with different parameters')
}
const coverage = synthesizedResult.coverage
if (coverage < 0.9) {
recommendations.push('Incomplete coverage - some parts of the file may not have been analyzed')
}
const totalIssues = synthesizedResult.issueAggregation?.total || 0
if (totalIssues > 50) {
recommendations.push('High number of issues detected - prioritize addressing critical and high-severity items')
}
return recommendations
}
private calculateOverallConfidence(synthesizedResult: any, verificationResult: any): number {
const synthesisConfidence = synthesizedResult.confidence || 0.5
const completenessScore = verificationResult.completeness?.score || 0.5
const consistencyScore = verificationResult.consistency?.score || 0.5
const accuracyScore = verificationResult.accuracy?.score || 0.5
// Weighted combination of confidence factors
return (
synthesisConfidence * 0.4 +
completenessScore * 0.3 +
consistencyScore * 0.2 +
accuracyScore * 0.1
)
}
private analyzeFileStructure(content: string): any {
// Basic file structure analysis
const lines = content.split('\n')
const functions = content.match(/function\s+\w+|def\s+\w+/g) || []
const classes = content.match(/class\s+\w+/g) || []
const imports = content.match(/import\s+.*|from\s+.*import|#include/g) || []
return {
lineCount: lines.length,
functions: functions.map(f => f.trim()),
classes: classes.map(c => c.trim()),
imports: imports.map(i => i.trim()),
complexity: this.calculateBasicComplexity(content)
}
}
private calculateBasicComplexity(content: string): number {
// Simple complexity calculation
const decisions = (content.match(/\b(if|else|while|for|switch|case|catch)\b/g) || []).length
const functions = (content.match(/function\s+\w+|def\s+\w+/g) || []).length
return decisions + functions
}
}
// Virtual agent for chunk processing
class VirtualChunkAgent implements IAgent {
readonly id: string
readonly type = AgentType.FILE_PROCESSOR
readonly reasoningModes = [
ReasoningMode.ULTRATHINKING,
ReasoningMode.ULTRAREASONING,
ReasoningMode.HYBRID_REASONING,
ReasoningMode.HYBRID_THINKING
]
readonly capabilities = ['chunk-processing', 'code-analysis', 'pattern-recognition']
private chunkIndex: number
private log = Log.create({ service: `chunk-agent` })
constructor(id: string, chunkIndex: number) {
this.id = id
this.chunkIndex = chunkIndex
}
async process(task: AgentTask): Promise<AgentResult> {
const startTime = Date.now()
try {
const chunk = task.data as FileChunk
this.log.debug("Processing chunk", {
chunkIndex: chunk.index,
chunkSize: chunk.content.length,
reasoningModes: task.reasoningModes
})
// Simulate sophisticated analysis of the chunk
const analysis = await this.analyzeChunk(chunk, task.context)
const processingTime = Date.now() - startTime
return {
agentId: this.id,
agentType: this.type,
taskId: task.id,
reasoningMode: ReasoningMode.ULTRATHINKING, // Primary mode for this result
result: analysis,
confidence: this.calculateConfidence(analysis, chunk),
processingTime
}
} catch (error) {
this.log.error("Chunk processing failed", { error })
return {
agentId: this.id,
agentType: this.type,
taskId: task.id,
reasoningMode: ReasoningMode.ULTRATHINKING,
result: { error: 'Processing failed' },
confidence: 0.1,
processingTime: Date.now() - startTime,
errors: [error instanceof Error ? error.message : String(error)]
}
}
}
private async analyzeChunk(chunk: FileChunk, context: any): Promise<any> {
const content = chunk.content
// Multi-faceted analysis of the chunk
const analysis = {
structure: this.analyzeChunkStructure(content),
patterns: this.identifyPatterns(content),
issues: this.detectIssues(content),
insights: this.generateInsights(content, chunk),
complexity: this.assessComplexity(content),
quality: this.assessQuality(content)
}
return analysis
}
private analyzeChunkStructure(content: string): any {
const lines = content.split('\n')
const functions = content.match(/function\s+\w+|def\s+\w+|fn\s+\w+/g) || []
const classes = content.match(/class\s+\w+|struct\s+\w+/g) || []
const variables = content.match(/(?:let|const|var|int|string)\s+\w+/g) || []
return {
lineCount: lines.length,
functions: functions.length,
classes: classes.length,
variables: variables.length,
codeLines: lines.filter(line => line.trim() && !line.trim().startsWith('//')).length,
commentLines: lines.filter(line => line.trim().startsWith('//')).length
}
}
private identifyPatterns(content: string): any[] {
const patterns = []
// Common code patterns
if (content.includes('.map(') || content.includes('.filter(')) {
patterns.push({ type: 'functional_programming', confidence: 0.8 })
}
if (content.includes('async') && content.includes('await')) {
patterns.push({ type: 'async_await', confidence: 0.9 })
}
if (content.includes('try') && content.includes('catch')) {
patterns.push({ type: 'error_handling', confidence: 0.9 })
}
if (content.includes('class') && content.includes('extends')) {
patterns.push({ type: 'inheritance', confidence: 0.8 })
}
return patterns
}
private detectIssues(content: string): any[] {
const issues = []
// Basic issue detection
if (content.includes('console.log')) {
issues.push({
type: 'code_quality',
severity: 'low',
message: 'Debug console.log statements found'
})
}
if (content.includes('// TODO') || content.includes('// FIXME')) {
issues.push({
type: 'maintenance',
severity: 'medium',
message: 'TODO/FIXME comments indicate incomplete work'
})
}
if (content.includes('eval(')) {
issues.push({
type: 'security',
severity: 'high',
message: 'Use of eval() poses security risks'
})
}
// Check for long lines
const longLines = content.split('\n').filter(line => line.length > 120)
if (longLines.length > 0) {
issues.push({
type: 'readability',
severity: 'low',
message: `${longLines.length} lines exceed 120 characters`
})
}
return issues
}
private generateInsights(content: string, chunk: FileChunk): string[] {
const insights = []
const structure = this.analyzeChunkStructure(content)
if (structure.functions > 5) {
insights.push('High function density in this section')
}
if (structure.commentLines / structure.codeLines > 0.3) {
insights.push('Well-documented code section')
}
if (structure.commentLines / structure.codeLines < 0.1) {
insights.push('Limited documentation in this section')
}
if (chunk.index === 0) {
insights.push('File beginning - likely contains imports and initial setup')
}
return insights
}
private assessComplexity(content: string): number {
const decisions = (content.match(/\b(if|else|while|for|switch|case)\b/g) || []).length
const nesting = this.calculateNestingDepth(content)
const functions = (content.match(/function\s+\w+|def\s+\w+/g) || []).length
return (decisions * 0.5 + nesting * 0.3 + functions * 0.2) / 10
}
private calculateNestingDepth(content: string): number {
let maxDepth = 0
let currentDepth = 0
for (const char of content) {
if (char === '{') {
currentDepth++
maxDepth = Math.max(maxDepth, currentDepth)
} else if (char === '}') {
currentDepth--
}
}
return maxDepth
}
private assessQuality(content: string): number {
let score = 1.0
// Deduct for potential quality issues
if (content.includes('console.log')) score -= 0.1
if (content.includes('// TODO')) score -= 0.1
if (content.includes('eval(')) score -= 0.3
// Add for good practices
if (content.includes('try') && content.includes('catch')) score += 0.1
if (content.includes('const ')) score += 0.05
return Math.max(0, Math.min(1, score))
}
private calculateConfidence(analysis: any, chunk: FileChunk): number {
let confidence = 0.7 // Base confidence
// Adjust based on analysis completeness
if (analysis.structure) confidence += 0.1
if (analysis.patterns && analysis.patterns.length > 0) confidence += 0.1
if (analysis.insights && analysis.insights.length > 0) confidence += 0.1
// Adjust based on chunk characteristics
if (chunk.content.length < 500) confidence -= 0.1 // Very small chunks
if (chunk.content.length > 10000) confidence -= 0.1 // Very large chunks
return Math.max(0.1, Math.min(1, confidence))
}
async collaborate(agents: IAgent[], context: SharedContext): Promise<void> {
// Simple collaboration - could be enhanced
this.log.debug("Collaborating with other agents", {
agentCount: agents.length,
sessionId: context.sessionId
})
}
async isHealthy(): Promise<boolean> {
return true // Virtual agents are always healthy
}
async dispose(): Promise<void> {
this.log.debug("Disposing chunk agent", { chunkIndex: this.chunkIndex })
}
}