UNPKG

@zxing/library

Version:

TypeScript port of ZXing multi-format 1D/2D barcode image processing library.

678 lines (677 loc) 30.9 kB
/* * Copyright 2007 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ var __values = (this && this.__values) || function(o) { var s = typeof Symbol === "function" && Symbol.iterator, m = s && o[s], i = 0; if (m) return m.call(o); if (o && typeof o.length === "number") return { next: function () { if (o && i >= o.length) o = void 0; return { value: o && o[i++], done: !o }; } }; throw new TypeError(s ? "Object is not iterable." : "Symbol.iterator is not defined."); }; /*namespace com.google.zxing.qrcode.detector {*/ import DecodeHintType from '../../DecodeHintType'; import ResultPoint from '../../ResultPoint'; import FinderPattern from './FinderPattern'; import FinderPatternInfo from './FinderPatternInfo'; import NotFoundException from '../../NotFoundException'; /*import java.io.Serializable;*/ /*import java.util.ArrayList;*/ /*import java.util.Collections;*/ /*import java.util.Comparator;*/ /*import java.util.List;*/ /*import java.util.Map;*/ /** * <p>This class attempts to find finder patterns in a QR Code. Finder patterns are the square * markers at three corners of a QR Code.</p> * * <p>This class is thread-safe but not reentrant. Each thread must allocate its own object. * * @author Sean Owen */ var FinderPatternFinder = /** @class */ (function () { /** * <p>Creates a finder that will search the image for three finder patterns.</p> * * @param image image to search */ // public constructor(image: BitMatrix) { // this(image, null) // } function FinderPatternFinder(image, resultPointCallback) { this.image = image; this.resultPointCallback = resultPointCallback; this.possibleCenters = []; this.crossCheckStateCount = new Int32Array(5); this.resultPointCallback = resultPointCallback; } FinderPatternFinder.prototype.getImage = function () { return this.image; }; FinderPatternFinder.prototype.getPossibleCenters = function () { return this.possibleCenters; }; FinderPatternFinder.prototype.find = function (hints) { var tryHarder = (hints !== null && hints !== undefined) && undefined !== hints.get(DecodeHintType.TRY_HARDER); var pureBarcode = (hints !== null && hints !== undefined) && undefined !== hints.get(DecodeHintType.PURE_BARCODE); var image = this.image; var maxI = image.getHeight(); var maxJ = image.getWidth(); // We are looking for black/white/black/white/black modules in // 1:1:3:1:1 ratio; this tracks the number of such modules seen so far // Let's assume that the maximum version QR Code we support takes up 1/4 the height of the // image, and then account for the center being 3 modules in size. This gives the smallest // number of pixels the center could be, so skip this often. When trying harder, look for all // QR versions regardless of how dense they are. var iSkip = Math.floor((3 * maxI) / (4 * FinderPatternFinder.MAX_MODULES)); if (iSkip < FinderPatternFinder.MIN_SKIP || tryHarder) { iSkip = FinderPatternFinder.MIN_SKIP; } var done = false; var stateCount = new Int32Array(5); for (var i = iSkip - 1; i < maxI && !done; i += iSkip) { // Get a row of black/white values stateCount[0] = 0; stateCount[1] = 0; stateCount[2] = 0; stateCount[3] = 0; stateCount[4] = 0; var currentState = 0; for (var j = 0; j < maxJ; j++) { if (image.get(j, i)) { // Black pixel if ((currentState & 1) === 1) { // Counting white pixels currentState++; } stateCount[currentState]++; } else { // White pixel if ((currentState & 1) === 0) { // Counting black pixels if (currentState === 4) { // A winner? if (FinderPatternFinder.foundPatternCross(stateCount)) { // Yes var confirmed = this.handlePossibleCenter(stateCount, i, j, pureBarcode); if (confirmed === true) { // Start examining every other line. Checking each line turned out to be too // expensive and didn't improve performance. iSkip = 2; if (this.hasSkipped === true) { done = this.haveMultiplyConfirmedCenters(); } else { var rowSkip = this.findRowSkip(); if (rowSkip > stateCount[2]) { // Skip rows between row of lower confirmed center // and top of presumed third confirmed center // but back up a bit to get a full chance of detecting // it, entire width of center of finder pattern // Skip by rowSkip, but back off by stateCount[2] (size of last center // of pattern we saw) to be conservative, and also back off by iSkip which // is about to be re-added i += rowSkip - stateCount[2] - iSkip; j = maxJ - 1; } } } else { stateCount[0] = stateCount[2]; stateCount[1] = stateCount[3]; stateCount[2] = stateCount[4]; stateCount[3] = 1; stateCount[4] = 0; currentState = 3; continue; } // Clear state to start looking again currentState = 0; stateCount[0] = 0; stateCount[1] = 0; stateCount[2] = 0; stateCount[3] = 0; stateCount[4] = 0; } else { // No, shift counts back by two stateCount[0] = stateCount[2]; stateCount[1] = stateCount[3]; stateCount[2] = stateCount[4]; stateCount[3] = 1; stateCount[4] = 0; currentState = 3; } } else { stateCount[++currentState]++; } } else { // Counting white pixels stateCount[currentState]++; } } } if (FinderPatternFinder.foundPatternCross(stateCount)) { var confirmed = this.handlePossibleCenter(stateCount, i, maxJ, pureBarcode); if (confirmed === true) { iSkip = stateCount[0]; if (this.hasSkipped) { // Found a third one done = this.haveMultiplyConfirmedCenters(); } } } } var patternInfo = this.selectBestPatterns(); ResultPoint.orderBestPatterns(patternInfo); return new FinderPatternInfo(patternInfo); }; /** * Given a count of black/white/black/white/black pixels just seen and an end position, * figures the location of the center of this run. */ FinderPatternFinder.centerFromEnd = function (stateCount, end /*int*/) { return (end - stateCount[4] - stateCount[3]) - stateCount[2] / 2.0; }; /** * @param stateCount count of black/white/black/white/black pixels just read * @return true iff the proportions of the counts is close enough to the 1/1/3/1/1 ratios * used by finder patterns to be considered a match */ FinderPatternFinder.foundPatternCross = function (stateCount) { var totalModuleSize = 0; for (var i = 0; i < 5; i++) { var count = stateCount[i]; if (count === 0) { return false; } totalModuleSize += count; } if (totalModuleSize < 7) { return false; } var moduleSize = totalModuleSize / 7.0; var maxVariance = moduleSize / 2.0; // Allow less than 50% variance from 1-1-3-1-1 proportions return Math.abs(moduleSize - stateCount[0]) < maxVariance && Math.abs(moduleSize - stateCount[1]) < maxVariance && Math.abs(3.0 * moduleSize - stateCount[2]) < 3 * maxVariance && Math.abs(moduleSize - stateCount[3]) < maxVariance && Math.abs(moduleSize - stateCount[4]) < maxVariance; }; FinderPatternFinder.prototype.getCrossCheckStateCount = function () { var crossCheckStateCount = this.crossCheckStateCount; crossCheckStateCount[0] = 0; crossCheckStateCount[1] = 0; crossCheckStateCount[2] = 0; crossCheckStateCount[3] = 0; crossCheckStateCount[4] = 0; return crossCheckStateCount; }; /** * After a vertical and horizontal scan finds a potential finder pattern, this method * "cross-cross-cross-checks" by scanning down diagonally through the center of the possible * finder pattern to see if the same proportion is detected. * * @param startI row where a finder pattern was detected * @param centerJ center of the section that appears to cross a finder pattern * @param maxCount maximum reasonable number of modules that should be * observed in any reading state, based on the results of the horizontal scan * @param originalStateCountTotal The original state count total. * @return true if proportions are withing expected limits */ FinderPatternFinder.prototype.crossCheckDiagonal = function (startI /*int*/, centerJ /*int*/, maxCount /*int*/, originalStateCountTotal /*int*/) { var stateCount = this.getCrossCheckStateCount(); // Start counting up, left from center finding black center mass var i = 0; var image = this.image; while (startI >= i && centerJ >= i && image.get(centerJ - i, startI - i)) { stateCount[2]++; i++; } if (startI < i || centerJ < i) { return false; } // Continue up, left finding white space while (startI >= i && centerJ >= i && !image.get(centerJ - i, startI - i) && stateCount[1] <= maxCount) { stateCount[1]++; i++; } // If already too many modules in this state or ran off the edge: if (startI < i || centerJ < i || stateCount[1] > maxCount) { return false; } // Continue up, left finding black border while (startI >= i && centerJ >= i && image.get(centerJ - i, startI - i) && stateCount[0] <= maxCount) { stateCount[0]++; i++; } if (stateCount[0] > maxCount) { return false; } var maxI = image.getHeight(); var maxJ = image.getWidth(); // Now also count down, right from center i = 1; while (startI + i < maxI && centerJ + i < maxJ && image.get(centerJ + i, startI + i)) { stateCount[2]++; i++; } // Ran off the edge? if (startI + i >= maxI || centerJ + i >= maxJ) { return false; } while (startI + i < maxI && centerJ + i < maxJ && !image.get(centerJ + i, startI + i) && stateCount[3] < maxCount) { stateCount[3]++; i++; } if (startI + i >= maxI || centerJ + i >= maxJ || stateCount[3] >= maxCount) { return false; } while (startI + i < maxI && centerJ + i < maxJ && image.get(centerJ + i, startI + i) && stateCount[4] < maxCount) { stateCount[4]++; i++; } if (stateCount[4] >= maxCount) { return false; } // If we found a finder-pattern-like section, but its size is more than 100% different than // the original, assume it's a false positive var stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4]; return Math.abs(stateCountTotal - originalStateCountTotal) < 2 * originalStateCountTotal && FinderPatternFinder.foundPatternCross(stateCount); }; /** * <p>After a horizontal scan finds a potential finder pattern, this method * "cross-checks" by scanning down vertically through the center of the possible * finder pattern to see if the same proportion is detected.</p> * * @param startI row where a finder pattern was detected * @param centerJ center of the section that appears to cross a finder pattern * @param maxCount maximum reasonable number of modules that should be * observed in any reading state, based on the results of the horizontal scan * @return vertical center of finder pattern, or {@link Float#NaN} if not found */ FinderPatternFinder.prototype.crossCheckVertical = function (startI /*int*/, centerJ /*int*/, maxCount /*int*/, originalStateCountTotal /*int*/) { var image = this.image; var maxI = image.getHeight(); var stateCount = this.getCrossCheckStateCount(); // Start counting up from center var i = startI; while (i >= 0 && image.get(centerJ, i)) { stateCount[2]++; i--; } if (i < 0) { return NaN; } while (i >= 0 && !image.get(centerJ, i) && stateCount[1] <= maxCount) { stateCount[1]++; i--; } // If already too many modules in this state or ran off the edge: if (i < 0 || stateCount[1] > maxCount) { return NaN; } while (i >= 0 && image.get(centerJ, i) && stateCount[0] <= maxCount) { stateCount[0]++; i--; } if (stateCount[0] > maxCount) { return NaN; } // Now also count down from center i = startI + 1; while (i < maxI && image.get(centerJ, i)) { stateCount[2]++; i++; } if (i === maxI) { return NaN; } while (i < maxI && !image.get(centerJ, i) && stateCount[3] < maxCount) { stateCount[3]++; i++; } if (i === maxI || stateCount[3] >= maxCount) { return NaN; } while (i < maxI && image.get(centerJ, i) && stateCount[4] < maxCount) { stateCount[4]++; i++; } if (stateCount[4] >= maxCount) { return NaN; } // If we found a finder-pattern-like section, but its size is more than 40% different than // the original, assume it's a false positive var stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4]; if (5 * Math.abs(stateCountTotal - originalStateCountTotal) >= 2 * originalStateCountTotal) { return NaN; } return FinderPatternFinder.foundPatternCross(stateCount) ? FinderPatternFinder.centerFromEnd(stateCount, i) : NaN; }; /** * <p>Like {@link #crossCheckVertical(int, int, int, int)}, and in fact is basically identical, * except it reads horizontally instead of vertically. This is used to cross-cross * check a vertical cross check and locate the real center of the alignment pattern.</p> */ FinderPatternFinder.prototype.crossCheckHorizontal = function (startJ /*int*/, centerI /*int*/, maxCount /*int*/, originalStateCountTotal /*int*/) { var image = this.image; var maxJ = image.getWidth(); var stateCount = this.getCrossCheckStateCount(); var j = startJ; while (j >= 0 && image.get(j, centerI)) { stateCount[2]++; j--; } if (j < 0) { return NaN; } while (j >= 0 && !image.get(j, centerI) && stateCount[1] <= maxCount) { stateCount[1]++; j--; } if (j < 0 || stateCount[1] > maxCount) { return NaN; } while (j >= 0 && image.get(j, centerI) && stateCount[0] <= maxCount) { stateCount[0]++; j--; } if (stateCount[0] > maxCount) { return NaN; } j = startJ + 1; while (j < maxJ && image.get(j, centerI)) { stateCount[2]++; j++; } if (j === maxJ) { return NaN; } while (j < maxJ && !image.get(j, centerI) && stateCount[3] < maxCount) { stateCount[3]++; j++; } if (j === maxJ || stateCount[3] >= maxCount) { return NaN; } while (j < maxJ && image.get(j, centerI) && stateCount[4] < maxCount) { stateCount[4]++; j++; } if (stateCount[4] >= maxCount) { return NaN; } // If we found a finder-pattern-like section, but its size is significantly different than // the original, assume it's a false positive var stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4]; if (5 * Math.abs(stateCountTotal - originalStateCountTotal) >= originalStateCountTotal) { return NaN; } return FinderPatternFinder.foundPatternCross(stateCount) ? FinderPatternFinder.centerFromEnd(stateCount, j) : NaN; }; /** * <p>This is called when a horizontal scan finds a possible alignment pattern. It will * cross check with a vertical scan, and if successful, will, ah, cross-cross-check * with another horizontal scan. This is needed primarily to locate the real horizontal * center of the pattern in cases of extreme skew. * And then we cross-cross-cross check with another diagonal scan.</p> * * <p>If that succeeds the finder pattern location is added to a list that tracks * the number of times each location has been nearly-matched as a finder pattern. * Each additional find is more evidence that the location is in fact a finder * pattern center * * @param stateCount reading state module counts from horizontal scan * @param i row where finder pattern may be found * @param j end of possible finder pattern in row * @param pureBarcode true if in "pure barcode" mode * @return true if a finder pattern candidate was found this time */ FinderPatternFinder.prototype.handlePossibleCenter = function (stateCount, i /*int*/, j /*int*/, pureBarcode) { var stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4]; var centerJ = FinderPatternFinder.centerFromEnd(stateCount, j); var centerI = this.crossCheckVertical(i, /*(int) */ Math.floor(centerJ), stateCount[2], stateCountTotal); if (!isNaN(centerI)) { // Re-cross check centerJ = this.crossCheckHorizontal(/*(int) */ Math.floor(centerJ), /*(int) */ Math.floor(centerI), stateCount[2], stateCountTotal); if (!isNaN(centerJ) && (!pureBarcode || this.crossCheckDiagonal(/*(int) */ Math.floor(centerI), /*(int) */ Math.floor(centerJ), stateCount[2], stateCountTotal))) { var estimatedModuleSize = stateCountTotal / 7.0; var found = false; var possibleCenters = this.possibleCenters; for (var index = 0, length_1 = possibleCenters.length; index < length_1; index++) { var center = possibleCenters[index]; // Look for about the same center and module size: if (center.aboutEquals(estimatedModuleSize, centerI, centerJ)) { possibleCenters[index] = center.combineEstimate(centerI, centerJ, estimatedModuleSize); found = true; break; } } if (!found) { var point = new FinderPattern(centerJ, centerI, estimatedModuleSize); possibleCenters.push(point); if (this.resultPointCallback !== null && this.resultPointCallback !== undefined) { this.resultPointCallback.foundPossibleResultPoint(point); } } return true; } } return false; }; /** * @return number of rows we could safely skip during scanning, based on the first * two finder patterns that have been located. In some cases their position will * allow us to infer that the third pattern must lie below a certain point farther * down in the image. */ FinderPatternFinder.prototype.findRowSkip = function () { var e_1, _a; var max = this.possibleCenters.length; if (max <= 1) { return 0; } var firstConfirmedCenter = null; try { for (var _b = __values(this.possibleCenters), _c = _b.next(); !_c.done; _c = _b.next()) { var center = _c.value; if (center.getCount() >= FinderPatternFinder.CENTER_QUORUM) { if (firstConfirmedCenter == null) { firstConfirmedCenter = center; } else { // We have two confirmed centers // How far down can we skip before resuming looking for the next // pattern? In the worst case, only the difference between the // difference in the x / y coordinates of the two centers. // This is the case where you find top left last. this.hasSkipped = true; return /*(int) */ Math.floor((Math.abs(firstConfirmedCenter.getX() - center.getX()) - Math.abs(firstConfirmedCenter.getY() - center.getY())) / 2); } } } } catch (e_1_1) { e_1 = { error: e_1_1 }; } finally { try { if (_c && !_c.done && (_a = _b.return)) _a.call(_b); } finally { if (e_1) throw e_1.error; } } return 0; }; /** * @return true iff we have found at least 3 finder patterns that have been detected * at least {@link #CENTER_QUORUM} times each, and, the estimated module size of the * candidates is "pretty similar" */ FinderPatternFinder.prototype.haveMultiplyConfirmedCenters = function () { var e_2, _a, e_3, _b; var confirmedCount = 0; var totalModuleSize = 0.0; var max = this.possibleCenters.length; try { for (var _c = __values(this.possibleCenters), _d = _c.next(); !_d.done; _d = _c.next()) { var pattern = _d.value; if (pattern.getCount() >= FinderPatternFinder.CENTER_QUORUM) { confirmedCount++; totalModuleSize += pattern.getEstimatedModuleSize(); } } } catch (e_2_1) { e_2 = { error: e_2_1 }; } finally { try { if (_d && !_d.done && (_a = _c.return)) _a.call(_c); } finally { if (e_2) throw e_2.error; } } if (confirmedCount < 3) { return false; } // OK, we have at least 3 confirmed centers, but, it's possible that one is a "false positive" // and that we need to keep looking. We detect this by asking if the estimated module sizes // vary too much. We arbitrarily say that when the total deviation from average exceeds // 5% of the total module size estimates, it's too much. var average = totalModuleSize / max; var totalDeviation = 0.0; try { for (var _e = __values(this.possibleCenters), _f = _e.next(); !_f.done; _f = _e.next()) { var pattern = _f.value; totalDeviation += Math.abs(pattern.getEstimatedModuleSize() - average); } } catch (e_3_1) { e_3 = { error: e_3_1 }; } finally { try { if (_f && !_f.done && (_b = _e.return)) _b.call(_e); } finally { if (e_3) throw e_3.error; } } return totalDeviation <= 0.05 * totalModuleSize; }; /** * @return the 3 best {@link FinderPattern}s from our list of candidates. The "best" are * those that have been detected at least {@link #CENTER_QUORUM} times, and whose module * size differs from the average among those patterns the least * @throws NotFoundException if 3 such finder patterns do not exist */ FinderPatternFinder.prototype.selectBestPatterns = function () { var e_4, _a, e_5, _b; var startSize = this.possibleCenters.length; if (startSize < 3) { // Couldn't find enough finder patterns throw new NotFoundException(); } var possibleCenters = this.possibleCenters; var average; // Filter outlier possibilities whose module size is too different if (startSize > 3) { // But we can only afford to do so if we have at least 4 possibilities to choose from var totalModuleSize = 0.0; var square = 0.0; try { for (var _c = __values(this.possibleCenters), _d = _c.next(); !_d.done; _d = _c.next()) { var center = _d.value; var size = center.getEstimatedModuleSize(); totalModuleSize += size; square += size * size; } } catch (e_4_1) { e_4 = { error: e_4_1 }; } finally { try { if (_d && !_d.done && (_a = _c.return)) _a.call(_c); } finally { if (e_4) throw e_4.error; } } average = totalModuleSize / startSize; var stdDev = Math.sqrt(square / startSize - average * average); possibleCenters.sort( /** * <p>Orders by furthest from average</p> */ // FurthestFromAverageComparator implements Comparator<FinderPattern> function (center1, center2) { var dA = Math.abs(center2.getEstimatedModuleSize() - average); var dB = Math.abs(center1.getEstimatedModuleSize() - average); return dA < dB ? -1 : dA > dB ? 1 : 0; }); var limit = Math.max(0.2 * average, stdDev); for (var i = 0; i < possibleCenters.length && possibleCenters.length > 3; i++) { var pattern = possibleCenters[i]; if (Math.abs(pattern.getEstimatedModuleSize() - average) > limit) { possibleCenters.splice(i, 1); i--; } } } if (possibleCenters.length > 3) { // Throw away all but those first size candidate points we found. var totalModuleSize = 0.0; try { for (var possibleCenters_1 = __values(possibleCenters), possibleCenters_1_1 = possibleCenters_1.next(); !possibleCenters_1_1.done; possibleCenters_1_1 = possibleCenters_1.next()) { var possibleCenter = possibleCenters_1_1.value; totalModuleSize += possibleCenter.getEstimatedModuleSize(); } } catch (e_5_1) { e_5 = { error: e_5_1 }; } finally { try { if (possibleCenters_1_1 && !possibleCenters_1_1.done && (_b = possibleCenters_1.return)) _b.call(possibleCenters_1); } finally { if (e_5) throw e_5.error; } } average = totalModuleSize / possibleCenters.length; possibleCenters.sort( /** * <p>Orders by {@link FinderPattern#getCount()}, descending.</p> */ // CenterComparator implements Comparator<FinderPattern> function (center1, center2) { if (center2.getCount() === center1.getCount()) { var dA = Math.abs(center2.getEstimatedModuleSize() - average); var dB = Math.abs(center1.getEstimatedModuleSize() - average); return dA < dB ? 1 : dA > dB ? -1 : 0; } else { return center2.getCount() - center1.getCount(); } }); possibleCenters.splice(3); // this is not realy necessary as we only return first 3 anyway } return [ possibleCenters[0], possibleCenters[1], possibleCenters[2] ]; }; FinderPatternFinder.CENTER_QUORUM = 2; FinderPatternFinder.MIN_SKIP = 3; // 1 pixel/module times 3 modules/center FinderPatternFinder.MAX_MODULES = 57; // support up to version 10 for mobile clients return FinderPatternFinder; }()); export default FinderPatternFinder;