UNPKG

@zxing/library

Version:

TypeScript port of ZXing multi-format 1D/2D barcode image processing library.

343 lines (342 loc) 15.4 kB
/* * Copyright 2007 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /*namespace com.google.zxing.qrcode.decoder {*/ import BitSource from '../../common/BitSource'; import CharacterSetECI from '../../common/CharacterSetECI'; import DecoderResult from '../../common/DecoderResult'; import StringUtils from '../../common/StringUtils'; import FormatException from '../../FormatException'; import StringBuilder from '../../util/StringBuilder'; import StringEncoding from '../../util/StringEncoding'; import Mode from './Mode'; /*import java.io.UnsupportedEncodingException;*/ /*import java.util.ArrayList;*/ /*import java.util.Collection;*/ /*import java.util.List;*/ /*import java.util.Map;*/ /** * <p>QR Codes can encode text as bits in one of several modes, and can use multiple modes * in one QR Code. This class decodes the bits back into text.</p> * * <p>See ISO 18004:2006, 6.4.3 - 6.4.7</p> * * @author Sean Owen */ var DecodedBitStreamParser = /** @class */ (function () { function DecodedBitStreamParser() { } DecodedBitStreamParser.decode = function (bytes, version, ecLevel, hints) { var bits = new BitSource(bytes); var result = new StringBuilder(); var byteSegments = new Array(); // 1 // TYPESCRIPTPORT: I do not use constructor with size 1 as in original Java means capacity and the array length is checked below var symbolSequence = -1; var parityData = -1; try { var currentCharacterSetECI = null; var fc1InEffect = false; var mode = void 0; do { // While still another segment to read... if (bits.available() < 4) { // OK, assume we're done. Really, a TERMINATOR mode should have been recorded here mode = Mode.TERMINATOR; } else { var modeBits = bits.readBits(4); mode = Mode.forBits(modeBits); // mode is encoded by 4 bits } switch (mode) { case Mode.TERMINATOR: break; case Mode.FNC1_FIRST_POSITION: case Mode.FNC1_SECOND_POSITION: // We do little with FNC1 except alter the parsed result a bit according to the spec fc1InEffect = true; break; case Mode.STRUCTURED_APPEND: if (bits.available() < 16) { throw new FormatException(); } // sequence number and parity is added later to the result metadata // Read next 8 bits (symbol sequence #) and 8 bits (data: parity), then continue symbolSequence = bits.readBits(8); parityData = bits.readBits(8); break; case Mode.ECI: // Count doesn't apply to ECI var value = DecodedBitStreamParser.parseECIValue(bits); currentCharacterSetECI = CharacterSetECI.getCharacterSetECIByValue(value); if (currentCharacterSetECI === null) { throw new FormatException(); } break; case Mode.HANZI: // First handle Hanzi mode which does not start with character count // Chinese mode contains a sub set indicator right after mode indicator var subset = bits.readBits(4); var countHanzi = bits.readBits(mode.getCharacterCountBits(version)); if (subset === DecodedBitStreamParser.GB2312_SUBSET) { DecodedBitStreamParser.decodeHanziSegment(bits, result, countHanzi); } break; default: // "Normal" QR code modes: // How many characters will follow, encoded in this mode? var count = bits.readBits(mode.getCharacterCountBits(version)); switch (mode) { case Mode.NUMERIC: DecodedBitStreamParser.decodeNumericSegment(bits, result, count); break; case Mode.ALPHANUMERIC: DecodedBitStreamParser.decodeAlphanumericSegment(bits, result, count, fc1InEffect); break; case Mode.BYTE: DecodedBitStreamParser.decodeByteSegment(bits, result, count, currentCharacterSetECI, byteSegments, hints); break; case Mode.KANJI: DecodedBitStreamParser.decodeKanjiSegment(bits, result, count); break; default: throw new FormatException(); } break; } } while (mode !== Mode.TERMINATOR); } catch (iae /*: IllegalArgumentException*/) { // from readBits() calls throw new FormatException(); } return new DecoderResult(bytes, result.toString(), byteSegments.length === 0 ? null : byteSegments, ecLevel === null ? null : ecLevel.toString(), symbolSequence, parityData); }; /** * See specification GBT 18284-2000 */ DecodedBitStreamParser.decodeHanziSegment = function (bits, result, count /*int*/) { // Don't crash trying to read more bits than we have available. if (count * 13 > bits.available()) { throw new FormatException(); } // Each character will require 2 bytes. Read the characters as 2-byte pairs // and decode as GB2312 afterwards var buffer = new Uint8Array(2 * count); var offset = 0; while (count > 0) { // Each 13 bits encodes a 2-byte character var twoBytes = bits.readBits(13); var assembledTwoBytes = (((twoBytes / 0x060) << 8) & 0xFFFFFFFF) | (twoBytes % 0x060); if (assembledTwoBytes < 0x003BF) { // In the 0xA1A1 to 0xAAFE range assembledTwoBytes += 0x0A1A1; } else { // In the 0xB0A1 to 0xFAFE range assembledTwoBytes += 0x0A6A1; } buffer[offset] = /*(byte) */ ((assembledTwoBytes >> 8) & 0xFF); buffer[offset + 1] = /*(byte) */ (assembledTwoBytes & 0xFF); offset += 2; count--; } try { result.append(StringEncoding.decode(buffer, StringUtils.GB2312)); // TYPESCRIPTPORT: TODO: implement GB2312 decode. StringView from MDN could be a starting point } catch (ignored /*: UnsupportedEncodingException*/) { throw new FormatException(ignored); } }; DecodedBitStreamParser.decodeKanjiSegment = function (bits, result, count /*int*/) { // Don't crash trying to read more bits than we have available. if (count * 13 > bits.available()) { throw new FormatException(); } // Each character will require 2 bytes. Read the characters as 2-byte pairs // and decode as Shift_JIS afterwards var buffer = new Uint8Array(2 * count); var offset = 0; while (count > 0) { // Each 13 bits encodes a 2-byte character var twoBytes = bits.readBits(13); var assembledTwoBytes = (((twoBytes / 0x0C0) << 8) & 0xFFFFFFFF) | (twoBytes % 0x0C0); if (assembledTwoBytes < 0x01F00) { // In the 0x8140 to 0x9FFC range assembledTwoBytes += 0x08140; } else { // In the 0xE040 to 0xEBBF range assembledTwoBytes += 0x0C140; } buffer[offset] = /*(byte) */ (assembledTwoBytes >> 8); buffer[offset + 1] = /*(byte) */ assembledTwoBytes; offset += 2; count--; } // Shift_JIS may not be supported in some environments: try { result.append(StringEncoding.decode(buffer, StringUtils.SHIFT_JIS)); // TYPESCRIPTPORT: TODO: implement SHIFT_JIS decode. StringView from MDN could be a starting point } catch (ignored /*: UnsupportedEncodingException*/) { throw new FormatException(ignored); } }; DecodedBitStreamParser.decodeByteSegment = function (bits, result, count /*int*/, currentCharacterSetECI, byteSegments, hints) { // Don't crash trying to read more bits than we have available. if (8 * count > bits.available()) { throw new FormatException(); } var readBytes = new Uint8Array(count); for (var i = 0; i < count; i++) { readBytes[i] = /*(byte) */ bits.readBits(8); } var encoding; if (currentCharacterSetECI === null) { // The spec isn't clear on this mode; see // section 6.4.5: t does not say which encoding to assuming // upon decoding. I have seen ISO-8859-1 used as well as // Shift_JIS -- without anything like an ECI designator to // give a hint. encoding = StringUtils.guessEncoding(readBytes, hints); } else { encoding = currentCharacterSetECI.getName(); } try { result.append(StringEncoding.decode(readBytes, encoding)); } catch (ignored /*: UnsupportedEncodingException*/) { throw new FormatException(ignored); } byteSegments.push(readBytes); }; DecodedBitStreamParser.toAlphaNumericChar = function (value /*int*/) { if (value >= DecodedBitStreamParser.ALPHANUMERIC_CHARS.length) { throw new FormatException(); } return DecodedBitStreamParser.ALPHANUMERIC_CHARS[value]; }; DecodedBitStreamParser.decodeAlphanumericSegment = function (bits, result, count /*int*/, fc1InEffect) { // Read two characters at a time var start = result.length(); while (count > 1) { if (bits.available() < 11) { throw new FormatException(); } var nextTwoCharsBits = bits.readBits(11); result.append(DecodedBitStreamParser.toAlphaNumericChar(Math.floor(nextTwoCharsBits / 45))); result.append(DecodedBitStreamParser.toAlphaNumericChar(nextTwoCharsBits % 45)); count -= 2; } if (count === 1) { // special case: one character left if (bits.available() < 6) { throw new FormatException(); } result.append(DecodedBitStreamParser.toAlphaNumericChar(bits.readBits(6))); } // See section 6.4.8.1, 6.4.8.2 if (fc1InEffect) { // We need to massage the result a bit if in an FNC1 mode: for (var i = start; i < result.length(); i++) { if (result.charAt(i) === '%') { if (i < result.length() - 1 && result.charAt(i + 1) === '%') { // %% is rendered as % result.deleteCharAt(i + 1); } else { // In alpha mode, % should be converted to FNC1 separator 0x1D result.setCharAt(i, String.fromCharCode(0x1D)); } } } } }; DecodedBitStreamParser.decodeNumericSegment = function (bits, result, count /*int*/) { // Read three digits at a time while (count >= 3) { // Each 10 bits encodes three digits if (bits.available() < 10) { throw new FormatException(); } var threeDigitsBits = bits.readBits(10); if (threeDigitsBits >= 1000) { throw new FormatException(); } result.append(DecodedBitStreamParser.toAlphaNumericChar(Math.floor(threeDigitsBits / 100))); result.append(DecodedBitStreamParser.toAlphaNumericChar(Math.floor(threeDigitsBits / 10) % 10)); result.append(DecodedBitStreamParser.toAlphaNumericChar(threeDigitsBits % 10)); count -= 3; } if (count === 2) { // Two digits left over to read, encoded in 7 bits if (bits.available() < 7) { throw new FormatException(); } var twoDigitsBits = bits.readBits(7); if (twoDigitsBits >= 100) { throw new FormatException(); } result.append(DecodedBitStreamParser.toAlphaNumericChar(Math.floor(twoDigitsBits / 10))); result.append(DecodedBitStreamParser.toAlphaNumericChar(twoDigitsBits % 10)); } else if (count === 1) { // One digit left over to read if (bits.available() < 4) { throw new FormatException(); } var digitBits = bits.readBits(4); if (digitBits >= 10) { throw new FormatException(); } result.append(DecodedBitStreamParser.toAlphaNumericChar(digitBits)); } }; DecodedBitStreamParser.parseECIValue = function (bits) { var firstByte = bits.readBits(8); if ((firstByte & 0x80) === 0) { // just one byte return firstByte & 0x7F; } if ((firstByte & 0xC0) === 0x80) { // two bytes var secondByte = bits.readBits(8); return (((firstByte & 0x3F) << 8) & 0xFFFFFFFF) | secondByte; } if ((firstByte & 0xE0) === 0xC0) { // three bytes var secondThirdBytes = bits.readBits(16); return (((firstByte & 0x1F) << 16) & 0xFFFFFFFF) | secondThirdBytes; } throw new FormatException(); }; /** * See ISO 18004:2006, 6.4.4 Table 5 */ DecodedBitStreamParser.ALPHANUMERIC_CHARS = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:'; DecodedBitStreamParser.GB2312_SUBSET = 1; return DecodedBitStreamParser; }()); export default DecodedBitStreamParser; // function Uint8ArrayToString(a: Uint8Array): string { // const CHUNK_SZ = 0x8000; // const c = new StringBuilder(); // for (let i = 0, length = a.length; i < length; i += CHUNK_SZ) { // c.append(String.fromCharCode.apply(null, a.subarray(i, i + CHUNK_SZ))); // } // return c.toString(); // }