UNPKG

@zxing/library

Version:

TypeScript port of ZXing multi-format 1D/2D barcode image processing library.

336 lines (334 loc) 13.4 kB
/* * Copyright 2008 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /*namespace com.google.zxing.oned {*/ import BarcodeFormat from '../BarcodeFormat'; import DecodeHintType from '../DecodeHintType'; import FormatException from '../FormatException'; import NotFoundException from '../NotFoundException'; import Result from '../Result'; import ResultPoint from '../ResultPoint'; import StringBuilder from '../util/StringBuilder'; import System from '../util/System'; import OneDReader from './OneDReader'; /** * <p>Decodes ITF barcodes.</p> * * @author Tjieco */ export default class ITFReader extends OneDReader { constructor() { // private static W = 3; // Pixel width of a 3x wide line // private static w = 2; // Pixel width of a 2x wide line // private static N = 1; // Pixed width of a narrow line super(...arguments); // Stores the actual narrow line width of the image being decoded. this.narrowLineWidth = -1; } // See ITFWriter.PATTERNS /* /!** * Patterns of Wide / Narrow lines to indicate each digit *!/ */ decodeRow(rowNumber, row, hints) { // Find out where the Middle section (payload) starts & ends let startRange = this.decodeStart(row); let endRange = this.decodeEnd(row); let result = new StringBuilder(); ITFReader.decodeMiddle(row, startRange[1], endRange[0], result); let resultString = result.toString(); let allowedLengths = null; if (hints != null) { allowedLengths = hints.get(DecodeHintType.ALLOWED_LENGTHS); } if (allowedLengths == null) { allowedLengths = ITFReader.DEFAULT_ALLOWED_LENGTHS; } // To avoid false positives with 2D barcodes (and other patterns), make // an assumption that the decoded string must be a 'standard' length if it's short let length = resultString.length; let lengthOK = false; let maxAllowedLength = 0; for (let value of allowedLengths) { if (length === value) { lengthOK = true; break; } if (value > maxAllowedLength) { maxAllowedLength = value; } } if (!lengthOK && length > maxAllowedLength) { lengthOK = true; } if (!lengthOK) { throw new FormatException(); } const points = [new ResultPoint(startRange[1], rowNumber), new ResultPoint(endRange[0], rowNumber)]; let resultReturn = new Result(resultString, null, // no natural byte representation for these barcodes 0, points, BarcodeFormat.ITF, new Date().getTime()); return resultReturn; } /* /!** * @param row row of black/white values to search * @param payloadStart offset of start pattern * @param resultString {@link StringBuilder} to append decoded chars to * @throws NotFoundException if decoding could not complete successfully *!/*/ static decodeMiddle(row, payloadStart, payloadEnd, resultString) { // Digits are interleaved in pairs - 5 black lines for one digit, and the // 5 // interleaved white lines for the second digit. // Therefore, need to scan 10 lines and then // split these into two arrays let counterDigitPair = new Int32Array(10); // 10 let counterBlack = new Int32Array(5); // 5 let counterWhite = new Int32Array(5); // 5 counterDigitPair.fill(0); counterBlack.fill(0); counterWhite.fill(0); while (payloadStart < payloadEnd) { // Get 10 runs of black/white. OneDReader.recordPattern(row, payloadStart, counterDigitPair); // Split them into each array for (let k = 0; k < 5; k++) { let twoK = 2 * k; counterBlack[k] = counterDigitPair[twoK]; counterWhite[k] = counterDigitPair[twoK + 1]; } let bestMatch = ITFReader.decodeDigit(counterBlack); resultString.append(bestMatch.toString()); bestMatch = this.decodeDigit(counterWhite); resultString.append(bestMatch.toString()); counterDigitPair.forEach(function (counterDigit) { payloadStart += counterDigit; }); } } /*/!** * Identify where the start of the middle / payload section starts. * * @param row row of black/white values to search * @return Array, containing index of start of 'start block' and end of * 'start block' *!/*/ decodeStart(row) { let endStart = ITFReader.skipWhiteSpace(row); let startPattern = ITFReader.findGuardPattern(row, endStart, ITFReader.START_PATTERN); // Determine the width of a narrow line in pixels. We can do this by // getting the width of the start pattern and dividing by 4 because its // made up of 4 narrow lines. this.narrowLineWidth = (startPattern[1] - startPattern[0]) / 4; this.validateQuietZone(row, startPattern[0]); return startPattern; } /*/!** * The start & end patterns must be pre/post fixed by a quiet zone. This * zone must be at least 10 times the width of a narrow line. Scan back until * we either get to the start of the barcode or match the necessary number of * quiet zone pixels. * * Note: Its assumed the row is reversed when using this method to find * quiet zone after the end pattern. * * ref: http://www.barcode-1.net/i25code.html * * @param row bit array representing the scanned barcode. * @param startPattern index into row of the start or end pattern. * @throws NotFoundException if the quiet zone cannot be found *!/*/ validateQuietZone(row, startPattern) { let quietCount = this.narrowLineWidth * 10; // expect to find this many pixels of quiet zone // if there are not so many pixel at all let's try as many as possible quietCount = quietCount < startPattern ? quietCount : startPattern; for (let i = startPattern - 1; quietCount > 0 && i >= 0; i--) { if (row.get(i)) { break; } quietCount--; } if (quietCount !== 0) { // Unable to find the necessary number of quiet zone pixels. throw new NotFoundException(); } } /* /!** * Skip all whitespace until we get to the first black line. * * @param row row of black/white values to search * @return index of the first black line. * @throws NotFoundException Throws exception if no black lines are found in the row *!/*/ static skipWhiteSpace(row) { const width = row.getSize(); const endStart = row.getNextSet(0); if (endStart === width) { throw new NotFoundException(); } return endStart; } /*/!** * Identify where the end of the middle / payload section ends. * * @param row row of black/white values to search * @return Array, containing index of start of 'end block' and end of 'end * block' *!/*/ decodeEnd(row) { // For convenience, reverse the row and then // search from 'the start' for the end block row.reverse(); try { let endStart = ITFReader.skipWhiteSpace(row); let endPattern; try { endPattern = ITFReader.findGuardPattern(row, endStart, ITFReader.END_PATTERN_REVERSED[0]); } catch (error) { if (error instanceof NotFoundException) { endPattern = ITFReader.findGuardPattern(row, endStart, ITFReader.END_PATTERN_REVERSED[1]); } } // The start & end patterns must be pre/post fixed by a quiet zone. This // zone must be at least 10 times the width of a narrow line. // ref: http://www.barcode-1.net/i25code.html this.validateQuietZone(row, endPattern[0]); // Now recalculate the indices of where the 'endblock' starts & stops to // accommodate // the reversed nature of the search let temp = endPattern[0]; endPattern[0] = row.getSize() - endPattern[1]; endPattern[1] = row.getSize() - temp; return endPattern; } finally { // Put the row back the right way. row.reverse(); } } /* /!** * @param row row of black/white values to search * @param rowOffset position to start search * @param pattern pattern of counts of number of black and white pixels that are * being searched for as a pattern * @return start/end horizontal offset of guard pattern, as an array of two * ints * @throws NotFoundException if pattern is not found *!/*/ static findGuardPattern(row, rowOffset, pattern) { let patternLength = pattern.length; let counters = new Int32Array(patternLength); let width = row.getSize(); let isWhite = false; let counterPosition = 0; let patternStart = rowOffset; counters.fill(0); for (let x = rowOffset; x < width; x++) { if (row.get(x) !== isWhite) { counters[counterPosition]++; } else { if (counterPosition === patternLength - 1) { if (OneDReader.patternMatchVariance(counters, pattern, ITFReader.MAX_INDIVIDUAL_VARIANCE) < ITFReader.MAX_AVG_VARIANCE) { return [patternStart, x]; } patternStart += counters[0] + counters[1]; System.arraycopy(counters, 2, counters, 0, counterPosition - 1); counters[counterPosition - 1] = 0; counters[counterPosition] = 0; counterPosition--; } else { counterPosition++; } counters[counterPosition] = 1; isWhite = !isWhite; } } throw new NotFoundException(); } /*/!** * Attempts to decode a sequence of ITF black/white lines into single * digit. * * @param counters the counts of runs of observed black/white/black/... values * @return The decoded digit * @throws NotFoundException if digit cannot be decoded *!/*/ static decodeDigit(counters) { let bestVariance = ITFReader.MAX_AVG_VARIANCE; // worst variance we'll accept let bestMatch = -1; let max = ITFReader.PATTERNS.length; for (let i = 0; i < max; i++) { let pattern = ITFReader.PATTERNS[i]; let variance = OneDReader.patternMatchVariance(counters, pattern, ITFReader.MAX_INDIVIDUAL_VARIANCE); if (variance < bestVariance) { bestVariance = variance; bestMatch = i; } else if (variance === bestVariance) { // if we find a second 'best match' with the same variance, we can not reliably report to have a suitable match bestMatch = -1; } } if (bestMatch >= 0) { return bestMatch % 10; } else { throw new NotFoundException(); } } } ITFReader.PATTERNS = [ Int32Array.from([1, 1, 2, 2, 1]), Int32Array.from([2, 1, 1, 1, 2]), Int32Array.from([1, 2, 1, 1, 2]), Int32Array.from([2, 2, 1, 1, 1]), Int32Array.from([1, 1, 2, 1, 2]), Int32Array.from([2, 1, 2, 1, 1]), Int32Array.from([1, 2, 2, 1, 1]), Int32Array.from([1, 1, 1, 2, 2]), Int32Array.from([2, 1, 1, 2, 1]), Int32Array.from([1, 2, 1, 2, 1]), Int32Array.from([1, 1, 3, 3, 1]), Int32Array.from([3, 1, 1, 1, 3]), Int32Array.from([1, 3, 1, 1, 3]), Int32Array.from([3, 3, 1, 1, 1]), Int32Array.from([1, 1, 3, 1, 3]), Int32Array.from([3, 1, 3, 1, 1]), Int32Array.from([1, 3, 3, 1, 1]), Int32Array.from([1, 1, 1, 3, 3]), Int32Array.from([3, 1, 1, 3, 1]), Int32Array.from([1, 3, 1, 3, 1]) // 9 ]; ITFReader.MAX_AVG_VARIANCE = 0.38; ITFReader.MAX_INDIVIDUAL_VARIANCE = 0.5; /* /!** Valid ITF lengths. Anything longer than the largest value is also allowed. *!/*/ ITFReader.DEFAULT_ALLOWED_LENGTHS = [6, 8, 10, 12, 14]; /*/!** * Start/end guard pattern. * * Note: The end pattern is reversed because the row is reversed before * searching for the END_PATTERN *!/*/ ITFReader.START_PATTERN = Int32Array.from([1, 1, 1, 1]); ITFReader.END_PATTERN_REVERSED = [ Int32Array.from([1, 1, 2]), Int32Array.from([1, 1, 3]) // 3x ];