UNPKG

@zxing/library

Version:

TypeScript port of ZXing multi-format 1D/2D barcode image processing library.

179 lines (178 loc) 7.71 kB
/* * Copyright 2007 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /*namespace com.google.zxing.common.reedsolomon {*/ import GenericGF from './GenericGF'; import GenericGFPoly from './GenericGFPoly'; import ReedSolomonException from '../../ReedSolomonException'; import IllegalStateException from '../../IllegalStateException'; /** * <p>Implements Reed-Solomon decoding, as the name implies.</p> * * <p>The algorithm will not be explained here, but the following references were helpful * in creating this implementation:</p> * * <ul> * <li>Bruce Maggs. * <a href="http://www.cs.cmu.edu/afs/cs.cmu.edu/project/pscico-guyb/realworld/www/rs_decode.ps"> * "Decoding Reed-Solomon Codes"</a> (see discussion of Forney's Formula)</li> * <li>J.I. Hall. <a href="www.mth.msu.edu/~jhall/classes/codenotes/GRS.pdf"> * "Chapter 5. Generalized Reed-Solomon Codes"</a> * (see discussion of Euclidean algorithm)</li> * </ul> * * <p>Much credit is due to William Rucklidge since portions of this code are an indirect * port of his C++ Reed-Solomon implementation.</p> * * @author Sean Owen * @author William Rucklidge * @author sanfordsquires */ export default class ReedSolomonDecoder { constructor(field) { this.field = field; } /** * <p>Decodes given set of received codewords, which include both data and error-correction * codewords. Really, this means it uses Reed-Solomon to detect and correct errors, in-place, * in the input.</p> * * @param received data and error-correction codewords * @param twoS number of error-correction codewords available * @throws ReedSolomonException if decoding fails for any reason */ decode(received, twoS /*int*/) { const field = this.field; const poly = new GenericGFPoly(field, received); const syndromeCoefficients = new Int32Array(twoS); let noError = true; for (let i = 0; i < twoS; i++) { const evalResult = poly.evaluateAt(field.exp(i + field.getGeneratorBase())); syndromeCoefficients[syndromeCoefficients.length - 1 - i] = evalResult; if (evalResult !== 0) { noError = false; } } if (noError) { return; } const syndrome = new GenericGFPoly(field, syndromeCoefficients); const sigmaOmega = this.runEuclideanAlgorithm(field.buildMonomial(twoS, 1), syndrome, twoS); const sigma = sigmaOmega[0]; const omega = sigmaOmega[1]; const errorLocations = this.findErrorLocations(sigma); const errorMagnitudes = this.findErrorMagnitudes(omega, errorLocations); for (let i = 0; i < errorLocations.length; i++) { const position = received.length - 1 - field.log(errorLocations[i]); if (position < 0) { throw new ReedSolomonException('Bad error location'); } received[position] = GenericGF.addOrSubtract(received[position], errorMagnitudes[i]); } } runEuclideanAlgorithm(a, b, R /*int*/) { // Assume a's degree is >= b's if (a.getDegree() < b.getDegree()) { const temp = a; a = b; b = temp; } const field = this.field; let rLast = a; let r = b; let tLast = field.getZero(); let t = field.getOne(); // Run Euclidean algorithm until r's degree is less than R/2 while (r.getDegree() >= (R / 2 | 0)) { let rLastLast = rLast; let tLastLast = tLast; rLast = r; tLast = t; // Divide rLastLast by rLast, with quotient in q and remainder in r if (rLast.isZero()) { // Oops, Euclidean algorithm already terminated? throw new ReedSolomonException('r_{i-1} was zero'); } r = rLastLast; let q = field.getZero(); const denominatorLeadingTerm = rLast.getCoefficient(rLast.getDegree()); const dltInverse = field.inverse(denominatorLeadingTerm); while (r.getDegree() >= rLast.getDegree() && !r.isZero()) { const degreeDiff = r.getDegree() - rLast.getDegree(); const scale = field.multiply(r.getCoefficient(r.getDegree()), dltInverse); q = q.addOrSubtract(field.buildMonomial(degreeDiff, scale)); r = r.addOrSubtract(rLast.multiplyByMonomial(degreeDiff, scale)); } t = q.multiply(tLast).addOrSubtract(tLastLast); if (r.getDegree() >= rLast.getDegree()) { throw new IllegalStateException('Division algorithm failed to reduce polynomial?'); } } const sigmaTildeAtZero = t.getCoefficient(0); if (sigmaTildeAtZero === 0) { throw new ReedSolomonException('sigmaTilde(0) was zero'); } const inverse = field.inverse(sigmaTildeAtZero); const sigma = t.multiplyScalar(inverse); const omega = r.multiplyScalar(inverse); return [sigma, omega]; } findErrorLocations(errorLocator) { // This is a direct application of Chien's search const numErrors = errorLocator.getDegree(); if (numErrors === 1) { // shortcut return Int32Array.from([errorLocator.getCoefficient(1)]); } const result = new Int32Array(numErrors); let e = 0; const field = this.field; for (let i = 1; i < field.getSize() && e < numErrors; i++) { if (errorLocator.evaluateAt(i) === 0) { result[e] = field.inverse(i); e++; } } if (e !== numErrors) { throw new ReedSolomonException('Error locator degree does not match number of roots'); } return result; } findErrorMagnitudes(errorEvaluator, errorLocations) { // This is directly applying Forney's Formula const s = errorLocations.length; const result = new Int32Array(s); const field = this.field; for (let i = 0; i < s; i++) { const xiInverse = field.inverse(errorLocations[i]); let denominator = 1; for (let j = 0; j < s; j++) { if (i !== j) { // denominator = field.multiply(denominator, // GenericGF.addOrSubtract(1, field.multiply(errorLocations[j], xiInverse))) // Above should work but fails on some Apple and Linux JDKs due to a Hotspot bug. // Below is a funny-looking workaround from Steven Parkes const term = field.multiply(errorLocations[j], xiInverse); const termPlus1 = (term & 0x1) === 0 ? term | 1 : term & ~1; denominator = field.multiply(denominator, termPlus1); } } result[i] = field.multiply(errorEvaluator.evaluateAt(xiInverse), field.inverse(denominator)); if (field.getGeneratorBase() !== 0) { result[i] = field.multiply(result[i], xiInverse); } } return result; } }