UNPKG

@zxing/library

Version:

TypeScript port of ZXing multi-format 1D/2D barcode image processing library.

130 lines (129 loc) 4.74 kB
/* * Copyright 2007 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /*namespace com.google.zxing.common.reedsolomon {*/ import GenericGFPoly from './GenericGFPoly'; import AbstractGenericGF from './AbstractGenericGF'; import Integer from '../../util/Integer'; import IllegalArgumentException from '../../IllegalArgumentException'; import ArithmeticException from '../../ArithmeticException'; /** * <p>This class contains utility methods for performing mathematical operations over * the Galois Fields. Operations use a given primitive polynomial in calculations.</p> * * <p>Throughout this package, elements of the GF are represented as an {@code int} * for convenience and speed (but at the cost of memory). * </p> * * @author Sean Owen * @author David Olivier */ export default class GenericGF extends AbstractGenericGF { /** * Create a representation of GF(size) using the given primitive polynomial. * * @param primitive irreducible polynomial whose coefficients are represented by * the bits of an int, where the least-significant bit represents the constant * coefficient * @param size the size of the field * @param b the factor b in the generator polynomial can be 0- or 1-based * (g(x) = (x+a^b)(x+a^(b+1))...(x+a^(b+2t-1))). * In most cases it should be 1, but for QR code it is 0. */ constructor(primitive /*int*/, size /*int*/, generatorBase /*int*/) { super(); this.primitive = primitive; this.size = size; this.generatorBase = generatorBase; const expTable = new Int32Array(size); let x = 1; for (let i = 0; i < size; i++) { expTable[i] = x; x *= 2; // we're assuming the generator alpha is 2 if (x >= size) { x ^= primitive; x &= size - 1; } } this.expTable = expTable; const logTable = new Int32Array(size); for (let i = 0; i < size - 1; i++) { logTable[expTable[i]] = i; } this.logTable = logTable; // logTable[0] == 0 but this should never be used this.zero = new GenericGFPoly(this, Int32Array.from([0])); this.one = new GenericGFPoly(this, Int32Array.from([1])); } getZero() { return this.zero; } getOne() { return this.one; } /** * @return the monomial representing coefficient * x^degree */ buildMonomial(degree /*int*/, coefficient /*int*/) { if (degree < 0) { throw new IllegalArgumentException(); } if (coefficient === 0) { return this.zero; } const coefficients = new Int32Array(degree + 1); coefficients[0] = coefficient; return new GenericGFPoly(this, coefficients); } /** * @return multiplicative inverse of a */ inverse(a /*int*/) { if (a === 0) { throw new ArithmeticException(); } return this.expTable[this.size - this.logTable[a] - 1]; } /** * @return product of a and b in GF(size) */ multiply(a /*int*/, b /*int*/) { if (a === 0 || b === 0) { return 0; } return this.expTable[(this.logTable[a] + this.logTable[b]) % (this.size - 1)]; } getSize() { return this.size; } getGeneratorBase() { return this.generatorBase; } /*@Override*/ toString() { return ('GF(0x' + Integer.toHexString(this.primitive) + ',' + this.size + ')'); } equals(o) { return o === this; } } GenericGF.AZTEC_DATA_12 = new GenericGF(0x1069, 4096, 1); // x^12 + x^6 + x^5 + x^3 + 1 GenericGF.AZTEC_DATA_10 = new GenericGF(0x409, 1024, 1); // x^10 + x^3 + 1 GenericGF.AZTEC_DATA_6 = new GenericGF(0x43, 64, 1); // x^6 + x + 1 GenericGF.AZTEC_PARAM = new GenericGF(0x13, 16, 1); // x^4 + x + 1 GenericGF.QR_CODE_FIELD_256 = new GenericGF(0x011d, 256, 0); // x^8 + x^4 + x^3 + x^2 + 1 GenericGF.DATA_MATRIX_FIELD_256 = new GenericGF(0x012d, 256, 1); // x^8 + x^5 + x^3 + x^2 + 1 GenericGF.AZTEC_DATA_8 = GenericGF.DATA_MATRIX_FIELD_256; GenericGF.MAXICODE_FIELD_64 = GenericGF.AZTEC_DATA_6;