UNPKG

@zxing/library

Version:

TypeScript port of ZXing multi-format 1D/2D barcode image processing library.

183 lines (182 loc) 8.1 kB
"use strict"; /* * Copyright 2007 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ Object.defineProperty(exports, "__esModule", { value: true }); /*namespace com.google.zxing.common.reedsolomon {*/ var GenericGF_1 = require("./GenericGF"); var GenericGFPoly_1 = require("./GenericGFPoly"); var ReedSolomonException_1 = require("../../ReedSolomonException"); var IllegalStateException_1 = require("../../IllegalStateException"); /** * <p>Implements Reed-Solomon decoding, as the name implies.</p> * * <p>The algorithm will not be explained here, but the following references were helpful * in creating this implementation:</p> * * <ul> * <li>Bruce Maggs. * <a href="http://www.cs.cmu.edu/afs/cs.cmu.edu/project/pscico-guyb/realworld/www/rs_decode.ps"> * "Decoding Reed-Solomon Codes"</a> (see discussion of Forney's Formula)</li> * <li>J.I. Hall. <a href="www.mth.msu.edu/~jhall/classes/codenotes/GRS.pdf"> * "Chapter 5. Generalized Reed-Solomon Codes"</a> * (see discussion of Euclidean algorithm)</li> * </ul> * * <p>Much credit is due to William Rucklidge since portions of this code are an indirect * port of his C++ Reed-Solomon implementation.</p> * * @author Sean Owen * @author William Rucklidge * @author sanfordsquires */ var ReedSolomonDecoder = /** @class */ (function () { function ReedSolomonDecoder(field) { this.field = field; } /** * <p>Decodes given set of received codewords, which include both data and error-correction * codewords. Really, this means it uses Reed-Solomon to detect and correct errors, in-place, * in the input.</p> * * @param received data and error-correction codewords * @param twoS number of error-correction codewords available * @throws ReedSolomonException if decoding fails for any reason */ ReedSolomonDecoder.prototype.decode = function (received, twoS /*int*/) { var field = this.field; var poly = new GenericGFPoly_1.default(field, received); var syndromeCoefficients = new Int32Array(twoS); var noError = true; for (var i = 0; i < twoS; i++) { var evalResult = poly.evaluateAt(field.exp(i + field.getGeneratorBase())); syndromeCoefficients[syndromeCoefficients.length - 1 - i] = evalResult; if (evalResult !== 0) { noError = false; } } if (noError) { return; } var syndrome = new GenericGFPoly_1.default(field, syndromeCoefficients); var sigmaOmega = this.runEuclideanAlgorithm(field.buildMonomial(twoS, 1), syndrome, twoS); var sigma = sigmaOmega[0]; var omega = sigmaOmega[1]; var errorLocations = this.findErrorLocations(sigma); var errorMagnitudes = this.findErrorMagnitudes(omega, errorLocations); for (var i = 0; i < errorLocations.length; i++) { var position = received.length - 1 - field.log(errorLocations[i]); if (position < 0) { throw new ReedSolomonException_1.default('Bad error location'); } received[position] = GenericGF_1.default.addOrSubtract(received[position], errorMagnitudes[i]); } }; ReedSolomonDecoder.prototype.runEuclideanAlgorithm = function (a, b, R /*int*/) { // Assume a's degree is >= b's if (a.getDegree() < b.getDegree()) { var temp = a; a = b; b = temp; } var field = this.field; var rLast = a; var r = b; var tLast = field.getZero(); var t = field.getOne(); // Run Euclidean algorithm until r's degree is less than R/2 while (r.getDegree() >= (R / 2 | 0)) { var rLastLast = rLast; var tLastLast = tLast; rLast = r; tLast = t; // Divide rLastLast by rLast, with quotient in q and remainder in r if (rLast.isZero()) { // Oops, Euclidean algorithm already terminated? throw new ReedSolomonException_1.default('r_{i-1} was zero'); } r = rLastLast; var q = field.getZero(); var denominatorLeadingTerm = rLast.getCoefficient(rLast.getDegree()); var dltInverse = field.inverse(denominatorLeadingTerm); while (r.getDegree() >= rLast.getDegree() && !r.isZero()) { var degreeDiff = r.getDegree() - rLast.getDegree(); var scale = field.multiply(r.getCoefficient(r.getDegree()), dltInverse); q = q.addOrSubtract(field.buildMonomial(degreeDiff, scale)); r = r.addOrSubtract(rLast.multiplyByMonomial(degreeDiff, scale)); } t = q.multiply(tLast).addOrSubtract(tLastLast); if (r.getDegree() >= rLast.getDegree()) { throw new IllegalStateException_1.default('Division algorithm failed to reduce polynomial?'); } } var sigmaTildeAtZero = t.getCoefficient(0); if (sigmaTildeAtZero === 0) { throw new ReedSolomonException_1.default('sigmaTilde(0) was zero'); } var inverse = field.inverse(sigmaTildeAtZero); var sigma = t.multiplyScalar(inverse); var omega = r.multiplyScalar(inverse); return [sigma, omega]; }; ReedSolomonDecoder.prototype.findErrorLocations = function (errorLocator) { // This is a direct application of Chien's search var numErrors = errorLocator.getDegree(); if (numErrors === 1) { // shortcut return Int32Array.from([errorLocator.getCoefficient(1)]); } var result = new Int32Array(numErrors); var e = 0; var field = this.field; for (var i = 1; i < field.getSize() && e < numErrors; i++) { if (errorLocator.evaluateAt(i) === 0) { result[e] = field.inverse(i); e++; } } if (e !== numErrors) { throw new ReedSolomonException_1.default('Error locator degree does not match number of roots'); } return result; }; ReedSolomonDecoder.prototype.findErrorMagnitudes = function (errorEvaluator, errorLocations) { // This is directly applying Forney's Formula var s = errorLocations.length; var result = new Int32Array(s); var field = this.field; for (var i = 0; i < s; i++) { var xiInverse = field.inverse(errorLocations[i]); var denominator = 1; for (var j = 0; j < s; j++) { if (i !== j) { // denominator = field.multiply(denominator, // GenericGF.addOrSubtract(1, field.multiply(errorLocations[j], xiInverse))) // Above should work but fails on some Apple and Linux JDKs due to a Hotspot bug. // Below is a funny-looking workaround from Steven Parkes var term = field.multiply(errorLocations[j], xiInverse); var termPlus1 = (term & 0x1) === 0 ? term | 1 : term & ~1; denominator = field.multiply(denominator, termPlus1); } } result[i] = field.multiply(errorEvaluator.evaluateAt(xiInverse), field.inverse(denominator)); if (field.getGeneratorBase() !== 0) { result[i] = field.multiply(result[i], xiInverse); } } return result; }; return ReedSolomonDecoder; }()); exports.default = ReedSolomonDecoder;