UNPKG

@zxing/library

Version:

TypeScript port of ZXing multi-format 1D/2D barcode image processing library.

203 lines (202 loc) 8.92 kB
"use strict"; /* * Copyright 2009 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ var __extends = (this && this.__extends) || (function () { var extendStatics = function (d, b) { extendStatics = Object.setPrototypeOf || ({ __proto__: [] } instanceof Array && function (d, b) { d.__proto__ = b; }) || function (d, b) { for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p]; }; return extendStatics(d, b); }; return function (d, b) { extendStatics(d, b); function __() { this.constructor = d; } d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __()); }; })(); Object.defineProperty(exports, "__esModule", { value: true }); /*namespace com.google.zxing.common {*/ var Binarizer_1 = require("../Binarizer"); var BitArray_1 = require("./BitArray"); var BitMatrix_1 = require("./BitMatrix"); var NotFoundException_1 = require("../NotFoundException"); /** * This Binarizer implementation uses the old ZXing global histogram approach. It is suitable * for low-end mobile devices which don't have enough CPU or memory to use a local thresholding * algorithm. However, because it picks a global black point, it cannot handle difficult shadows * and gradients. * * Faster mobile devices and all desktop applications should probably use HybridBinarizer instead. * * @author dswitkin@google.com (Daniel Switkin) * @author Sean Owen */ var GlobalHistogramBinarizer = /** @class */ (function (_super) { __extends(GlobalHistogramBinarizer, _super); function GlobalHistogramBinarizer(source) { var _this = _super.call(this, source) || this; _this.luminances = GlobalHistogramBinarizer.EMPTY; _this.buckets = new Int32Array(GlobalHistogramBinarizer.LUMINANCE_BUCKETS); return _this; } // Applies simple sharpening to the row data to improve performance of the 1D Readers. /*@Override*/ GlobalHistogramBinarizer.prototype.getBlackRow = function (y /*int*/, row) { var source = this.getLuminanceSource(); var width = source.getWidth(); if (row === undefined || row === null || row.getSize() < width) { row = new BitArray_1.default(width); } else { row.clear(); } this.initArrays(width); var localLuminances = source.getRow(y, this.luminances); var localBuckets = this.buckets; for (var x = 0; x < width; x++) { localBuckets[(localLuminances[x] & 0xff) >> GlobalHistogramBinarizer.LUMINANCE_SHIFT]++; } var blackPoint = GlobalHistogramBinarizer.estimateBlackPoint(localBuckets); if (width < 3) { // Special case for very small images for (var x = 0; x < width; x++) { if ((localLuminances[x] & 0xff) < blackPoint) { row.set(x); } } } else { var left = localLuminances[0] & 0xff; var center = localLuminances[1] & 0xff; for (var x = 1; x < width - 1; x++) { var right = localLuminances[x + 1] & 0xff; // A simple -1 4 -1 box filter with a weight of 2. if (((center * 4) - left - right) / 2 < blackPoint) { row.set(x); } left = center; center = right; } } return row; }; // Does not sharpen the data, as this call is intended to only be used by 2D Readers. /*@Override*/ GlobalHistogramBinarizer.prototype.getBlackMatrix = function () { var source = this.getLuminanceSource(); var width = source.getWidth(); var height = source.getHeight(); var matrix = new BitMatrix_1.default(width, height); // Quickly calculates the histogram by sampling four rows from the image. This proved to be // more robust on the blackbox tests than sampling a diagonal as we used to do. this.initArrays(width); var localBuckets = this.buckets; for (var y = 1; y < 5; y++) { var row = Math.floor((height * y) / 5); var localLuminances_1 = source.getRow(row, this.luminances); var right = Math.floor((width * 4) / 5); for (var x = Math.floor(width / 5); x < right; x++) { var pixel = localLuminances_1[x] & 0xff; localBuckets[pixel >> GlobalHistogramBinarizer.LUMINANCE_SHIFT]++; } } var blackPoint = GlobalHistogramBinarizer.estimateBlackPoint(localBuckets); // We delay reading the entire image luminance until the black point estimation succeeds. // Although we end up reading four rows twice, it is consistent with our motto of // "fail quickly" which is necessary for continuous scanning. var localLuminances = source.getMatrix(); for (var y = 0; y < height; y++) { var offset = y * width; for (var x = 0; x < width; x++) { var pixel = localLuminances[offset + x] & 0xff; if (pixel < blackPoint) { matrix.set(x, y); } } } return matrix; }; /*@Override*/ GlobalHistogramBinarizer.prototype.createBinarizer = function (source) { return new GlobalHistogramBinarizer(source); }; GlobalHistogramBinarizer.prototype.initArrays = function (luminanceSize /*int*/) { if (this.luminances.length < luminanceSize) { this.luminances = new Uint8ClampedArray(luminanceSize); } var buckets = this.buckets; for (var x = 0; x < GlobalHistogramBinarizer.LUMINANCE_BUCKETS; x++) { buckets[x] = 0; } }; GlobalHistogramBinarizer.estimateBlackPoint = function (buckets) { // Find the tallest peak in the histogram. var numBuckets = buckets.length; var maxBucketCount = 0; var firstPeak = 0; var firstPeakSize = 0; for (var x = 0; x < numBuckets; x++) { if (buckets[x] > firstPeakSize) { firstPeak = x; firstPeakSize = buckets[x]; } if (buckets[x] > maxBucketCount) { maxBucketCount = buckets[x]; } } // Find the second-tallest peak which is somewhat far from the tallest peak. var secondPeak = 0; var secondPeakScore = 0; for (var x = 0; x < numBuckets; x++) { var distanceToBiggest = x - firstPeak; // Encourage more distant second peaks by multiplying by square of distance. var score = buckets[x] * distanceToBiggest * distanceToBiggest; if (score > secondPeakScore) { secondPeak = x; secondPeakScore = score; } } // Make sure firstPeak corresponds to the black peak. if (firstPeak > secondPeak) { var temp = firstPeak; firstPeak = secondPeak; secondPeak = temp; } // If there is too little contrast in the image to pick a meaningful black point, throw rather // than waste time trying to decode the image, and risk false positives. if (secondPeak - firstPeak <= numBuckets / 16) { throw new NotFoundException_1.default(); } // Find a valley between them that is low and closer to the white peak. var bestValley = secondPeak - 1; var bestValleyScore = -1; for (var x = secondPeak - 1; x > firstPeak; x--) { var fromFirst = x - firstPeak; var score = fromFirst * fromFirst * (secondPeak - x) * (maxBucketCount - buckets[x]); if (score > bestValleyScore) { bestValley = x; bestValleyScore = score; } } return bestValley << GlobalHistogramBinarizer.LUMINANCE_SHIFT; }; GlobalHistogramBinarizer.LUMINANCE_BITS = 5; GlobalHistogramBinarizer.LUMINANCE_SHIFT = 8 - GlobalHistogramBinarizer.LUMINANCE_BITS; GlobalHistogramBinarizer.LUMINANCE_BUCKETS = 1 << GlobalHistogramBinarizer.LUMINANCE_BITS; GlobalHistogramBinarizer.EMPTY = Uint8ClampedArray.from([0]); return GlobalHistogramBinarizer; }(Binarizer_1.default)); exports.default = GlobalHistogramBinarizer;