@zenghawtin/graph2d
Version:
Javascript library for 2d geometry
336 lines (258 loc) • 6.44 kB
JavaScript
class Matrix3 {
constructor(n11, n12, n13, n21, n22, n23, n31, n32, n33) {
Matrix3.prototype.isMatrix3 = true;
this.elements = [1, 0, 0, 0, 1, 0, 0, 0, 1];
if (n11 !== undefined) {
this.set(n11, n12, n13, n21, n22, n23, n31, n32, n33);
}
}
set(n11, n12, n13, n21, n22, n23, n31, n32, n33) {
const te = this.elements;
te[0] = n11;
te[1] = n21;
te[2] = n31;
te[3] = n12;
te[4] = n22;
te[5] = n32;
te[6] = n13;
te[7] = n23;
te[8] = n33;
return this;
}
identity() {
this.set(1, 0, 0, 0, 1, 0, 0, 0, 1);
return this;
}
copy(m) {
const te = this.elements;
const me = m.elements;
te[0] = me[0];
te[1] = me[1];
te[2] = me[2];
te[3] = me[3];
te[4] = me[4];
te[5] = me[5];
te[6] = me[6];
te[7] = me[7];
te[8] = me[8];
return this;
}
extractBasis(xAxis, yAxis, zAxis) {
xAxis.setFromMatrix3Column(this, 0);
yAxis.setFromMatrix3Column(this, 1);
zAxis.setFromMatrix3Column(this, 2);
return this;
}
setFromMatrix4(m) {
const me = m.elements;
this.set(me[0], me[4], me[8], me[1], me[5], me[9], me[2], me[6], me[10]);
return this;
}
multiply(m) {
return this.multiplyMatrices(this, m);
}
premultiply(m) {
return this.multiplyMatrices(m, this);
}
multiplyMatrices(a, b) {
const ae = a.elements;
const be = b.elements;
const te = this.elements;
const a11 = ae[0],
a12 = ae[3],
a13 = ae[6];
const a21 = ae[1],
a22 = ae[4],
a23 = ae[7];
const a31 = ae[2],
a32 = ae[5],
a33 = ae[8];
const b11 = be[0],
b12 = be[3],
b13 = be[6];
const b21 = be[1],
b22 = be[4],
b23 = be[7];
const b31 = be[2],
b32 = be[5],
b33 = be[8];
te[0] = a11 * b11 + a12 * b21 + a13 * b31;
te[3] = a11 * b12 + a12 * b22 + a13 * b32;
te[6] = a11 * b13 + a12 * b23 + a13 * b33;
te[1] = a21 * b11 + a22 * b21 + a23 * b31;
te[4] = a21 * b12 + a22 * b22 + a23 * b32;
te[7] = a21 * b13 + a22 * b23 + a23 * b33;
te[2] = a31 * b11 + a32 * b21 + a33 * b31;
te[5] = a31 * b12 + a32 * b22 + a33 * b32;
te[8] = a31 * b13 + a32 * b23 + a33 * b33;
return this;
}
multiplyScalar(s) {
const te = this.elements;
te[0] *= s;
te[3] *= s;
te[6] *= s;
te[1] *= s;
te[4] *= s;
te[7] *= s;
te[2] *= s;
te[5] *= s;
te[8] *= s;
return this;
}
determinant() {
const te = this.elements;
const a = te[0],
b = te[1],
c = te[2],
d = te[3],
e = te[4],
f = te[5],
g = te[6],
h = te[7],
i = te[8];
return (
a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g
);
}
invert() {
const te = this.elements,
n11 = te[0],
n21 = te[1],
n31 = te[2],
n12 = te[3],
n22 = te[4],
n32 = te[5],
n13 = te[6],
n23 = te[7],
n33 = te[8],
t11 = n33 * n22 - n32 * n23,
t12 = n32 * n13 - n33 * n12,
t13 = n23 * n12 - n22 * n13,
det = n11 * t11 + n21 * t12 + n31 * t13;
if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0);
const detInv = 1 / det;
te[0] = t11 * detInv;
te[1] = (n31 * n23 - n33 * n21) * detInv;
te[2] = (n32 * n21 - n31 * n22) * detInv;
te[3] = t12 * detInv;
te[4] = (n33 * n11 - n31 * n13) * detInv;
te[5] = (n31 * n12 - n32 * n11) * detInv;
te[6] = t13 * detInv;
te[7] = (n21 * n13 - n23 * n11) * detInv;
te[8] = (n22 * n11 - n21 * n12) * detInv;
return this;
}
transpose() {
let tmp;
const m = this.elements;
tmp = m[1];
m[1] = m[3];
m[3] = tmp;
tmp = m[2];
m[2] = m[6];
m[6] = tmp;
tmp = m[5];
m[5] = m[7];
m[7] = tmp;
return this;
}
getNormalMatrix(matrix4) {
return this.setFromMatrix4(matrix4).invert().transpose();
}
transposeIntoArray(r) {
const m = this.elements;
r[0] = m[0];
r[1] = m[3];
r[2] = m[6];
r[3] = m[1];
r[4] = m[4];
r[5] = m[7];
r[6] = m[2];
r[7] = m[5];
r[8] = m[8];
return this;
}
setUvTransform(tx, ty, sx, sy, rotation, cx, cy) {
const c = Math.cos(rotation);
const s = Math.sin(rotation);
this.set(
sx * c,
sx * s,
-sx * (c * cx + s * cy) + cx + tx,
-sy * s,
sy * c,
-sy * (-s * cx + c * cy) + cy + ty,
0,
0,
1
);
return this;
}
//
scale(sx, sy) {
this.premultiply(_m3.makeScale(sx, sy));
return this;
}
rotate(theta) {
this.premultiply(_m3.makeRotation(-theta));
return this;
}
translate(tx, ty) {
this.premultiply(_m3.makeTranslation(tx, ty));
return this;
}
// for 2D Transforms
makeTranslation(x, y) {
if (x.isVector2) {
this.set(1, 0, x.x, 0, 1, x.y, 0, 0, 1);
} else {
this.set(1, 0, x, 0, 1, y, 0, 0, 1);
}
return this;
}
makeRotation(theta) {
// counterclockwise
const c = Math.cos(theta);
const s = Math.sin(theta);
this.set(c, -s, 0, s, c, 0, 0, 0, 1);
return this;
}
makeScale(x, y) {
this.set(x, 0, 0, 0, y, 0, 0, 0, 1);
return this;
}
//
equals(matrix) {
const te = this.elements;
const me = matrix.elements;
for (let i = 0; i < 9; i++) {
if (te[i] !== me[i]) return false;
}
return true;
}
fromArray(array, offset = 0) {
for (let i = 0; i < 9; i++) {
this.elements[i] = array[i + offset];
}
return this;
}
toArray(array = [], offset = 0) {
const te = this.elements;
array[offset] = te[0];
array[offset + 1] = te[1];
array[offset + 2] = te[2];
array[offset + 3] = te[3];
array[offset + 4] = te[4];
array[offset + 5] = te[5];
array[offset + 6] = te[6];
array[offset + 7] = te[7];
array[offset + 8] = te[8];
return array;
}
clone() {
return new this.constructor().fromArray(this.elements);
}
}
const _m3 = /*@__PURE__*/ new Matrix3();
export { Matrix3 };