UNPKG

@zenghawtin/graph2d

Version:

Javascript library for 2d geometry

336 lines (258 loc) 6.44 kB
class Matrix3 { constructor(n11, n12, n13, n21, n22, n23, n31, n32, n33) { Matrix3.prototype.isMatrix3 = true; this.elements = [1, 0, 0, 0, 1, 0, 0, 0, 1]; if (n11 !== undefined) { this.set(n11, n12, n13, n21, n22, n23, n31, n32, n33); } } set(n11, n12, n13, n21, n22, n23, n31, n32, n33) { const te = this.elements; te[0] = n11; te[1] = n21; te[2] = n31; te[3] = n12; te[4] = n22; te[5] = n32; te[6] = n13; te[7] = n23; te[8] = n33; return this; } identity() { this.set(1, 0, 0, 0, 1, 0, 0, 0, 1); return this; } copy(m) { const te = this.elements; const me = m.elements; te[0] = me[0]; te[1] = me[1]; te[2] = me[2]; te[3] = me[3]; te[4] = me[4]; te[5] = me[5]; te[6] = me[6]; te[7] = me[7]; te[8] = me[8]; return this; } extractBasis(xAxis, yAxis, zAxis) { xAxis.setFromMatrix3Column(this, 0); yAxis.setFromMatrix3Column(this, 1); zAxis.setFromMatrix3Column(this, 2); return this; } setFromMatrix4(m) { const me = m.elements; this.set(me[0], me[4], me[8], me[1], me[5], me[9], me[2], me[6], me[10]); return this; } multiply(m) { return this.multiplyMatrices(this, m); } premultiply(m) { return this.multiplyMatrices(m, this); } multiplyMatrices(a, b) { const ae = a.elements; const be = b.elements; const te = this.elements; const a11 = ae[0], a12 = ae[3], a13 = ae[6]; const a21 = ae[1], a22 = ae[4], a23 = ae[7]; const a31 = ae[2], a32 = ae[5], a33 = ae[8]; const b11 = be[0], b12 = be[3], b13 = be[6]; const b21 = be[1], b22 = be[4], b23 = be[7]; const b31 = be[2], b32 = be[5], b33 = be[8]; te[0] = a11 * b11 + a12 * b21 + a13 * b31; te[3] = a11 * b12 + a12 * b22 + a13 * b32; te[6] = a11 * b13 + a12 * b23 + a13 * b33; te[1] = a21 * b11 + a22 * b21 + a23 * b31; te[4] = a21 * b12 + a22 * b22 + a23 * b32; te[7] = a21 * b13 + a22 * b23 + a23 * b33; te[2] = a31 * b11 + a32 * b21 + a33 * b31; te[5] = a31 * b12 + a32 * b22 + a33 * b32; te[8] = a31 * b13 + a32 * b23 + a33 * b33; return this; } multiplyScalar(s) { const te = this.elements; te[0] *= s; te[3] *= s; te[6] *= s; te[1] *= s; te[4] *= s; te[7] *= s; te[2] *= s; te[5] *= s; te[8] *= s; return this; } determinant() { const te = this.elements; const a = te[0], b = te[1], c = te[2], d = te[3], e = te[4], f = te[5], g = te[6], h = te[7], i = te[8]; return ( a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g ); } invert() { const te = this.elements, n11 = te[0], n21 = te[1], n31 = te[2], n12 = te[3], n22 = te[4], n32 = te[5], n13 = te[6], n23 = te[7], n33 = te[8], t11 = n33 * n22 - n32 * n23, t12 = n32 * n13 - n33 * n12, t13 = n23 * n12 - n22 * n13, det = n11 * t11 + n21 * t12 + n31 * t13; if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0); const detInv = 1 / det; te[0] = t11 * detInv; te[1] = (n31 * n23 - n33 * n21) * detInv; te[2] = (n32 * n21 - n31 * n22) * detInv; te[3] = t12 * detInv; te[4] = (n33 * n11 - n31 * n13) * detInv; te[5] = (n31 * n12 - n32 * n11) * detInv; te[6] = t13 * detInv; te[7] = (n21 * n13 - n23 * n11) * detInv; te[8] = (n22 * n11 - n21 * n12) * detInv; return this; } transpose() { let tmp; const m = this.elements; tmp = m[1]; m[1] = m[3]; m[3] = tmp; tmp = m[2]; m[2] = m[6]; m[6] = tmp; tmp = m[5]; m[5] = m[7]; m[7] = tmp; return this; } getNormalMatrix(matrix4) { return this.setFromMatrix4(matrix4).invert().transpose(); } transposeIntoArray(r) { const m = this.elements; r[0] = m[0]; r[1] = m[3]; r[2] = m[6]; r[3] = m[1]; r[4] = m[4]; r[5] = m[7]; r[6] = m[2]; r[7] = m[5]; r[8] = m[8]; return this; } setUvTransform(tx, ty, sx, sy, rotation, cx, cy) { const c = Math.cos(rotation); const s = Math.sin(rotation); this.set( sx * c, sx * s, -sx * (c * cx + s * cy) + cx + tx, -sy * s, sy * c, -sy * (-s * cx + c * cy) + cy + ty, 0, 0, 1 ); return this; } // scale(sx, sy) { this.premultiply(_m3.makeScale(sx, sy)); return this; } rotate(theta) { this.premultiply(_m3.makeRotation(-theta)); return this; } translate(tx, ty) { this.premultiply(_m3.makeTranslation(tx, ty)); return this; } // for 2D Transforms makeTranslation(x, y) { if (x.isVector2) { this.set(1, 0, x.x, 0, 1, x.y, 0, 0, 1); } else { this.set(1, 0, x, 0, 1, y, 0, 0, 1); } return this; } makeRotation(theta) { // counterclockwise const c = Math.cos(theta); const s = Math.sin(theta); this.set(c, -s, 0, s, c, 0, 0, 0, 1); return this; } makeScale(x, y) { this.set(x, 0, 0, 0, y, 0, 0, 0, 1); return this; } // equals(matrix) { const te = this.elements; const me = matrix.elements; for (let i = 0; i < 9; i++) { if (te[i] !== me[i]) return false; } return true; } fromArray(array, offset = 0) { for (let i = 0; i < 9; i++) { this.elements[i] = array[i + offset]; } return this; } toArray(array = [], offset = 0) { const te = this.elements; array[offset] = te[0]; array[offset + 1] = te[1]; array[offset + 2] = te[2]; array[offset + 3] = te[3]; array[offset + 4] = te[4]; array[offset + 5] = te[5]; array[offset + 6] = te[6]; array[offset + 7] = te[7]; array[offset + 8] = te[8]; return array; } clone() { return new this.constructor().fromArray(this.elements); } } const _m3 = /*@__PURE__*/ new Matrix3(); export { Matrix3 };