@woosh/meep-engine
Version:
Pure JavaScript game engine. Fully featured and production ready.
119 lines (97 loc) • 3.98 kB
JavaScript
import { v2_length } from "../../vec2/v2_length.js";
/**
*
* @param {number[]} mat4
* @param {number} row_index
* @param {number} column_index
* @return {number}
*/
function coeff(mat4, row_index, column_index) {
return mat4[row_index + column_index * 4];
}
const sin = Math.sin;
const cos = Math.cos;
const atan2 = Math.atan2;
/**
*
* \returns the Euler-angles of the rotation matrix \c *this using the convention defined by the triplet (\a a0,\a a1,\a a2)
*
* Each of the three parameters \a a0,\a a1,\a a2 represents the respective rotation axis as an integer in {0,1,2}.
* For instance, in:
* \code Vector3f ea = mat.eulerAngles(2, 0, 2); \endcode
* "2" represents the z axis and "0" the x axis, etc. The returned angles are such that
* we have the following equality:
* \code
* mat == AngleAxisf(ea[0], Vector3f::UnitZ())
* * AngleAxisf(ea[1], Vector3f::UnitX())
* * AngleAxisf(ea[2], Vector3f::UnitZ()); \endcode
* This corresponds to the right-multiply conventions (with right hand side frames).
*
* The returned angles are in the ranges [0:pi]x[-pi:pi]x[-pi:pi].
* NOTE: ported from Eigen C++ library
* @see https://gitlab.com/libeigen/eigen/-/blob/master/Eigen/src/Geometry/EulerAngles.h
* @see https://stackoverflow.com/questions/11514063/extract-yaw-pitch-and-roll-from-a-rotationmatrix
* @param {number[]} output
* @param {number[]|Float32Array|mat4} m4 source matrix to extract rotation from
* @param {number} a0 axis index (0 = X, 1 = Y, 2 = Z)
* @param {number} a1 axis index
* @param {number} a2 axis index
*/
export function eulerAnglesFromMatrix(
output, m4,
a0, a1, a2
) {
const odd = ((a0 + 1) % 3 === a1) ? 0 : 1;
const i = a0;
const j = (a0 + 1 + odd) % 3;
const k = (a0 + 2 - odd) % 3;
if (a0 === a2) {
output[0] = atan2(coeff(m4, j, i), coeff(m4, k, i));
if ((odd && output[0] < 0) || ((~odd) && output[0] > 0)) {
if (output[0] > 0) {
output[0] -= Math.PI;
} else {
output[0] += Math.PI;
}
const s2 = v2_length(coeff(m4, j, i), coeff(m4, k, i));
output[1] = -atan2(s2, coeff(m4, i, i));
} else {
const s2 = v2_length(coeff(m4, j, i), coeff(m4, k, i));
output[1] = atan2(s2, coeff(m4, i, i));
}
// With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles,
// we can compute their respective rotation, and apply its inverse to M. Since the result must
// be a rotation around x, we have:
//
// c2 s1.s2 c1.s2 1 0 0
// 0 c1 -s1 * M = 0 c3 s3
// -s2 s1.c2 c1.c2 0 -s3 c3
//
// Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3
const s1 = sin(output[0]);
const c1 = cos(output[0]);
output[2] = atan2(c1 * coeff(m4, j, k) - s1 * coeff(m4, k, k), c1 * coeff(m4, j, j) - s1 * coeff(m4, k, j));
} else {
output[0] = atan2(coeff(m4, j, k), coeff(m4, k, k));
const c2 = v2_length(coeff(m4, i, i), coeff(m4, i, j));
if ((odd && output[0] < 0) || ((~odd) && output[0] > 0)) {
if (output[0] > 0) {
output[0] -= Math.PI;
} else {
output[0] += Math.PI;
}
output[1] = atan2(-coeff(m4, i, k), -c2);
} else {
output[1] = atan2(-coeff(m4, i, k), c2);
}
const s1 = sin(output[0]);
const c1 = cos(output[0]);
output[2] = atan2(s1 * coeff(m4, k, i) - c1 * coeff(m4, j, i), c1 * coeff(m4, j, j) - s1 * coeff(m4, k, j));
}
if (odd === 0) {
// invert result
output[0] = -output[0];
output[1] = -output[1];
output[2] = -output[2];
}
}