@vladmandic/face-api
Version:
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS
74 lines (63 loc) • 2.94 kB
JavaScript
/**
* FaceAPI Demo for NodeJS
* - Used by `node-multiprocess.js`
*/
const fs = require('fs');
const path = require('path');
const log = require('@vladmandic/pilogger');
// workers actual import tfjs and faceapi modules
const tf = require('@tensorflow/tfjs-node'); // in nodejs environments tfjs-node is required to be loaded before face-api
const faceapi = require('../dist/face-api.node.js'); // use this when using face-api in dev mode
// const faceapi = require('@vladmandic/face-api'); // use this when face-api is installed as module (majority of use cases)
// options used by faceapi
const modelPathRoot = '../model';
const minConfidence = 0.15;
const maxResults = 5;
let optionsSSDMobileNet;
// read image from a file and create tensor to be used by faceapi
// this way we don't need any monkey patches
// you can add any pre-proocessing here such as resizing, etc.
async function image(img) {
const buffer = fs.readFileSync(img);
const tensor = tf.tidy(() => tf.node.decodeImage(buffer).toFloat().expandDims());
return tensor;
}
// actual faceapi detection
async function detect(img) {
const tensor = await image(img);
const result = await faceapi
.detectAllFaces(tensor, optionsSSDMobileNet)
.withFaceLandmarks();
// .withFaceExpressions()
// .withFaceDescriptors()
// .withAgeAndGender();
process.send({ image: img, detected: result }); // send results back to main
process.send({ ready: true }); // send signal back to main that this worker is now idle and ready for next image
tensor.dispose();
}
async function main() {
// on worker start first initialize message handler so we don't miss any messages
process.on('message', (msg) => {
if (msg.exit) process.exit(); // if main told worker to exit
if (msg.test) process.send({ test: true });
if (msg.image) detect(msg.image); // if main told worker to process image
log.data('Worker received message:', process.pid, msg); // generic log
});
// then initialize tfjs
await faceapi.tf.setBackend('tensorflow');
await faceapi.tf.enableProdMode();
await faceapi.tf.ENV.set('DEBUG', false);
await faceapi.tf.ready();
log.state('Worker: PID:', process.pid, `TensorFlow/JS ${faceapi.tf.version_core} FaceAPI ${faceapi.version} Backend: ${faceapi.tf.getBackend()}`);
// and load and initialize facepi models
const modelPath = path.join(__dirname, modelPathRoot);
await faceapi.nets.ssdMobilenetv1.loadFromDisk(modelPath);
await faceapi.nets.ageGenderNet.loadFromDisk(modelPath);
await faceapi.nets.faceLandmark68Net.loadFromDisk(modelPath);
await faceapi.nets.faceRecognitionNet.loadFromDisk(modelPath);
await faceapi.nets.faceExpressionNet.loadFromDisk(modelPath);
optionsSSDMobileNet = new faceapi.SsdMobilenetv1Options({ minConfidence, maxResults });
// now we're ready, so send message back to main that it knows it can use this worker
process.send({ ready: true });
}
main();