UNPKG

@vladmandic/face-api

Version:

FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

106 lines (105 loc) 5.99 kB
import { AgeGenderNet } from '../ageGenderNet/AgeGenderNet'; import { AgeAndGenderPrediction } from '../ageGenderNet/types'; import { FaceDetection } from '../classes/FaceDetection'; import { FaceLandmarks68 } from '../classes/FaceLandmarks68'; import { TNetInput } from '../dom/index'; import { FaceExpressionNet } from '../faceExpressionNet/FaceExpressionNet'; import { FaceExpressions } from '../faceExpressionNet/FaceExpressions'; import { FaceLandmark68Net } from '../faceLandmarkNet/FaceLandmark68Net'; import { FaceLandmark68TinyNet } from '../faceLandmarkNet/FaceLandmark68TinyNet'; import { FaceRecognitionNet } from '../faceRecognitionNet/FaceRecognitionNet'; import { SsdMobilenetv1 } from '../ssdMobilenetv1/SsdMobilenetv1'; import { SsdMobilenetv1Options } from '../ssdMobilenetv1/SsdMobilenetv1Options'; import { TinyFaceDetector } from '../tinyFaceDetector/TinyFaceDetector'; import { TinyFaceDetectorOptions } from '../tinyFaceDetector/TinyFaceDetectorOptions'; import { ITinyYolov2Options, TinyYolov2 } from '../tinyYolov2/index'; export declare const nets: { ssdMobilenetv1: SsdMobilenetv1; tinyFaceDetector: TinyFaceDetector; tinyYolov2: TinyYolov2; faceLandmark68Net: FaceLandmark68Net; faceLandmark68TinyNet: FaceLandmark68TinyNet; faceRecognitionNet: FaceRecognitionNet; faceExpressionNet: FaceExpressionNet; ageGenderNet: AgeGenderNet; }; /** * Attempts to detect all faces in an image using SSD Mobilenetv1 Network. * * @param input The input image. * @param options (optional, default: see SsdMobilenetv1Options constructor for default parameters). * @returns Bounding box of each face with score. */ export declare const ssdMobilenetv1: (input: TNetInput, options: SsdMobilenetv1Options) => Promise<FaceDetection[]>; /** * Attempts to detect all faces in an image using the Tiny Face Detector. * * @param input The input image. * @param options (optional, default: see TinyFaceDetectorOptions constructor for default parameters). * @returns Bounding box of each face with score. */ export declare const tinyFaceDetector: (input: TNetInput, options: TinyFaceDetectorOptions) => Promise<FaceDetection[]>; /** * Attempts to detect all faces in an image using the Tiny Yolov2 Network. * * @param input The input image. * @param options (optional, default: see TinyYolov2Options constructor for default parameters). * @returns Bounding box of each face with score. */ export declare const tinyYolov2: (input: TNetInput, options: ITinyYolov2Options) => Promise<FaceDetection[]>; /** * Detects the 68 point face landmark positions of the face shown in an image. * * @param inputs The face image extracted from the bounding box of a face. Can * also be an array of input images, which will be batch processed. * @returns 68 point face landmarks or array thereof in case of batch input. */ export declare const detectFaceLandmarks: (input: TNetInput) => Promise<FaceLandmarks68 | FaceLandmarks68[]>; /** * Detects the 68 point face landmark positions of the face shown in an image * using a tinier version of the 68 point face landmark model, which is slightly * faster at inference, but also slightly less accurate. * * @param inputs The face image extracted from the bounding box of a face. Can * also be an array of input images, which will be batch processed. * @returns 68 point face landmarks or array thereof in case of batch input. */ export declare const detectFaceLandmarksTiny: (input: TNetInput) => Promise<FaceLandmarks68 | FaceLandmarks68[]>; /** * Computes a 128 entry vector (face descriptor / face embeddings) from the face shown in an image, * which uniquely represents the features of that persons face. The computed face descriptor can * be used to measure the similarity between faces, by computing the euclidean distance of two * face descriptors. * * @param inputs The face image extracted from the aligned bounding box of a face. Can * also be an array of input images, which will be batch processed. * @returns Face descriptor with 128 entries or array thereof in case of batch input. */ export declare const computeFaceDescriptor: (input: TNetInput) => Promise<Float32Array | Float32Array[]>; /** * Recognizes the facial expressions from a face image. * * @param inputs The face image extracted from the bounding box of a face. Can * also be an array of input images, which will be batch processed. * @returns Facial expressions with corresponding probabilities or array thereof in case of batch input. */ export declare const recognizeFaceExpressions: (input: TNetInput) => Promise<FaceExpressions | FaceExpressions[]>; /** * Predicts age and gender from a face image. * * @param inputs The face image extracted from the bounding box of a face. Can * also be an array of input images, which will be batch processed. * @returns Predictions with age, gender and gender probability or array thereof in case of batch input. */ export declare const predictAgeAndGender: (input: TNetInput) => Promise<AgeAndGenderPrediction | AgeAndGenderPrediction[]>; export declare const loadSsdMobilenetv1Model: (url: string) => Promise<void>; export declare const loadTinyFaceDetectorModel: (url: string) => Promise<void>; export declare const loadTinyYolov2Model: (url: string) => Promise<void>; export declare const loadFaceLandmarkModel: (url: string) => Promise<void>; export declare const loadFaceLandmarkTinyModel: (url: string) => Promise<void>; export declare const loadFaceRecognitionModel: (url: string) => Promise<void>; export declare const loadFaceExpressionModel: (url: string) => Promise<void>; export declare const loadAgeGenderModel: (url: string) => Promise<void>; export declare const loadFaceDetectionModel: (url: string) => Promise<void>; export declare const locateFaces: (input: TNetInput, options: SsdMobilenetv1Options) => Promise<FaceDetection[]>; export declare const detectLandmarks: (input: TNetInput) => Promise<FaceLandmarks68 | FaceLandmarks68[]>;