UNPKG

@vladmandic/face-api

Version:

FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

78 lines (66 loc) 3.12 kB
import * as tf from '../../dist/tfjs.esm'; import { ConvParams, depthwiseSeparableConv } from '../common/index'; import { NetInput, TNetInput, toNetInput } from '../dom/index'; import { NeuralNetwork } from '../NeuralNetwork'; import { normalize } from '../ops/index'; import { range } from '../utils/index'; import { extractParams } from './extractParams'; import { extractParamsFromWeightMap } from './extractParamsFromWeightMap'; import { MainBlockParams, ReductionBlockParams, TinyXceptionParams } from './types'; function conv(x: tf.Tensor4D, params: ConvParams, stride: [number, number]): tf.Tensor4D { return tf.add(tf.conv2d(x, params.filters, stride, 'same'), params.bias); } function reductionBlock(x: tf.Tensor4D, params: ReductionBlockParams, isActivateInput = true): tf.Tensor4D { let out = isActivateInput ? tf.relu(x) : x; out = depthwiseSeparableConv(out, params.separable_conv0, [1, 1]); out = depthwiseSeparableConv(tf.relu(out), params.separable_conv1, [1, 1]); out = tf.maxPool(out, [3, 3], [2, 2], 'same'); out = tf.add(out, conv(x, params.expansion_conv, [2, 2])); return out; } function mainBlock(x: tf.Tensor4D, params: MainBlockParams): tf.Tensor4D { let out = depthwiseSeparableConv(tf.relu(x), params.separable_conv0, [1, 1]); out = depthwiseSeparableConv(tf.relu(out), params.separable_conv1, [1, 1]); out = depthwiseSeparableConv(tf.relu(out), params.separable_conv2, [1, 1]); out = tf.add(out, x); return out; } export class TinyXception extends NeuralNetwork<TinyXceptionParams> { private _numMainBlocks: number constructor(numMainBlocks: number) { super('TinyXception'); this._numMainBlocks = numMainBlocks; } public forwardInput(input: NetInput): tf.Tensor4D { const { params } = this; if (!params) { throw new Error('TinyXception - load model before inference'); } return tf.tidy(() => { const batchTensor = tf.cast(input.toBatchTensor(112, true), 'float32'); const meanRgb = [122.782, 117.001, 104.298]; const normalized = normalize(batchTensor, meanRgb).div(255) as tf.Tensor4D; let out = tf.relu(conv(normalized, params.entry_flow.conv_in, [2, 2])); out = reductionBlock(out, params.entry_flow.reduction_block_0, false); out = reductionBlock(out, params.entry_flow.reduction_block_1); range(this._numMainBlocks, 0, 1).forEach((idx) => { out = mainBlock(out, params.middle_flow[`main_block_${idx}`]); }); out = reductionBlock(out, params.exit_flow.reduction_block); out = tf.relu(depthwiseSeparableConv(out, params.exit_flow.separable_conv, [1, 1])); return out; }); } public async forward(input: TNetInput): Promise<tf.Tensor4D> { return this.forwardInput(await toNetInput(input)); } protected getDefaultModelName(): string { return 'tiny_xception_model'; } protected extractParamsFromWeightMap(weightMap: tf.NamedTensorMap) { return extractParamsFromWeightMap(weightMap, this._numMainBlocks); } protected extractParams(weights: Float32Array) { return extractParams(weights, this._numMainBlocks); } }