@vladmandic/face-api
Version:
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS
85 lines (73 loc) • 3.28 kB
text/typescript
import * as tf from '../../dist/tfjs.esm';
import { ConvParams } from '../common/index';
import { disposeUnusedWeightTensors } from '../common/disposeUnusedWeightTensors';
import { loadSeparableConvParamsFactory } from '../common/extractSeparableConvParamsFactory';
import { extractWeightEntryFactory } from '../common/extractWeightEntryFactory';
import { ParamMapping } from '../common/types';
import { TinyYolov2Config } from './config';
import { BatchNorm, ConvWithBatchNorm, TinyYolov2NetParams } from './types';
function extractorsFactory(weightMap: any, paramMappings: ParamMapping[]) {
const extractWeightEntry = extractWeightEntryFactory(weightMap, paramMappings);
function extractBatchNormParams(prefix: string): BatchNorm {
const sub = extractWeightEntry(`${prefix}/sub`, 1);
const truediv = extractWeightEntry(`${prefix}/truediv`, 1);
return { sub, truediv };
}
function extractConvParams(prefix: string): ConvParams {
const filters = extractWeightEntry(`${prefix}/filters`, 4);
const bias = extractWeightEntry(`${prefix}/bias`, 1);
return { filters, bias };
}
function extractConvWithBatchNormParams(prefix: string): ConvWithBatchNorm {
const conv = extractConvParams(`${prefix}/conv`);
const bn = extractBatchNormParams(`${prefix}/bn`);
return { conv, bn };
}
const extractSeparableConvParams = loadSeparableConvParamsFactory(extractWeightEntry);
return {
extractConvParams,
extractConvWithBatchNormParams,
extractSeparableConvParams,
};
}
export function extractParamsFromWeightMap(
weightMap: tf.NamedTensorMap,
config: TinyYolov2Config,
): { params: TinyYolov2NetParams, paramMappings: ParamMapping[] } {
const paramMappings: ParamMapping[] = [];
const {
extractConvParams,
extractConvWithBatchNormParams,
extractSeparableConvParams,
} = extractorsFactory(weightMap, paramMappings);
let params: TinyYolov2NetParams;
if (config.withSeparableConvs) {
// eslint-disable-next-line no-mixed-operators
const numFilters = (config.filterSizes && config.filterSizes.length || 9);
params = {
conv0: config.isFirstLayerConv2d ? extractConvParams('conv0') : extractSeparableConvParams('conv0'),
conv1: extractSeparableConvParams('conv1'),
conv2: extractSeparableConvParams('conv2'),
conv3: extractSeparableConvParams('conv3'),
conv4: extractSeparableConvParams('conv4'),
conv5: extractSeparableConvParams('conv5'),
conv6: numFilters > 7 ? extractSeparableConvParams('conv6') : undefined,
conv7: numFilters > 8 ? extractSeparableConvParams('conv7') : undefined,
conv8: extractConvParams('conv8'),
};
} else {
params = {
conv0: extractConvWithBatchNormParams('conv0'),
conv1: extractConvWithBatchNormParams('conv1'),
conv2: extractConvWithBatchNormParams('conv2'),
conv3: extractConvWithBatchNormParams('conv3'),
conv4: extractConvWithBatchNormParams('conv4'),
conv5: extractConvWithBatchNormParams('conv5'),
conv6: extractConvWithBatchNormParams('conv6'),
conv7: extractConvWithBatchNormParams('conv7'),
conv8: extractConvParams('conv8'),
};
}
disposeUnusedWeightTensors(weightMap, paramMappings);
return { params, paramMappings };
}