UNPKG

@vladmandic/face-api

Version:

FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

85 lines (73 loc) 3.28 kB
import * as tf from '../../dist/tfjs.esm'; import { ConvParams } from '../common/index'; import { disposeUnusedWeightTensors } from '../common/disposeUnusedWeightTensors'; import { loadSeparableConvParamsFactory } from '../common/extractSeparableConvParamsFactory'; import { extractWeightEntryFactory } from '../common/extractWeightEntryFactory'; import { ParamMapping } from '../common/types'; import { TinyYolov2Config } from './config'; import { BatchNorm, ConvWithBatchNorm, TinyYolov2NetParams } from './types'; function extractorsFactory(weightMap: any, paramMappings: ParamMapping[]) { const extractWeightEntry = extractWeightEntryFactory(weightMap, paramMappings); function extractBatchNormParams(prefix: string): BatchNorm { const sub = extractWeightEntry(`${prefix}/sub`, 1); const truediv = extractWeightEntry(`${prefix}/truediv`, 1); return { sub, truediv }; } function extractConvParams(prefix: string): ConvParams { const filters = extractWeightEntry(`${prefix}/filters`, 4); const bias = extractWeightEntry(`${prefix}/bias`, 1); return { filters, bias }; } function extractConvWithBatchNormParams(prefix: string): ConvWithBatchNorm { const conv = extractConvParams(`${prefix}/conv`); const bn = extractBatchNormParams(`${prefix}/bn`); return { conv, bn }; } const extractSeparableConvParams = loadSeparableConvParamsFactory(extractWeightEntry); return { extractConvParams, extractConvWithBatchNormParams, extractSeparableConvParams, }; } export function extractParamsFromWeightMap( weightMap: tf.NamedTensorMap, config: TinyYolov2Config, ): { params: TinyYolov2NetParams, paramMappings: ParamMapping[] } { const paramMappings: ParamMapping[] = []; const { extractConvParams, extractConvWithBatchNormParams, extractSeparableConvParams, } = extractorsFactory(weightMap, paramMappings); let params: TinyYolov2NetParams; if (config.withSeparableConvs) { // eslint-disable-next-line no-mixed-operators const numFilters = (config.filterSizes && config.filterSizes.length || 9); params = { conv0: config.isFirstLayerConv2d ? extractConvParams('conv0') : extractSeparableConvParams('conv0'), conv1: extractSeparableConvParams('conv1'), conv2: extractSeparableConvParams('conv2'), conv3: extractSeparableConvParams('conv3'), conv4: extractSeparableConvParams('conv4'), conv5: extractSeparableConvParams('conv5'), conv6: numFilters > 7 ? extractSeparableConvParams('conv6') : undefined, conv7: numFilters > 8 ? extractSeparableConvParams('conv7') : undefined, conv8: extractConvParams('conv8'), }; } else { params = { conv0: extractConvWithBatchNormParams('conv0'), conv1: extractConvWithBatchNormParams('conv1'), conv2: extractConvWithBatchNormParams('conv2'), conv3: extractConvWithBatchNormParams('conv3'), conv4: extractConvWithBatchNormParams('conv4'), conv5: extractConvWithBatchNormParams('conv5'), conv6: extractConvWithBatchNormParams('conv6'), conv7: extractConvWithBatchNormParams('conv7'), conv8: extractConvParams('conv8'), }; } disposeUnusedWeightTensors(weightMap, paramMappings); return { params, paramMappings }; }