@vladmandic/face-api
Version:
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS
127 lines (112 loc) • 5.77 kB
text/typescript
import * as tf from '../../dist/tfjs.esm';
import { ConvParams, disposeUnusedWeightTensors, extractWeightEntryFactory, ParamMapping } from '../common/index';
import { isTensor3D } from '../utils/index';
import { BoxPredictionParams, MobileNetV1, NetParams, PointwiseConvParams, PredictionLayerParams } from './types';
function extractorsFactory(weightMap: any, paramMappings: ParamMapping[]) {
const extractWeightEntry = extractWeightEntryFactory(weightMap, paramMappings);
function extractPointwiseConvParams(prefix: string, idx: number, mappedPrefix: string): PointwiseConvParams {
const filters = extractWeightEntry(`${prefix}/Conv2d_${idx}_pointwise/weights`, 4, `${mappedPrefix}/filters`);
const batch_norm_offset = extractWeightEntry(`${prefix}/Conv2d_${idx}_pointwise/convolution_bn_offset`, 1, `${mappedPrefix}/batch_norm_offset`);
return { filters, batch_norm_offset };
}
function extractConvPairParams(idx: number): MobileNetV1.ConvPairParams {
const mappedPrefix = `mobilenetv1/conv_${idx}`;
const prefixDepthwiseConv = `MobilenetV1/Conv2d_${idx}_depthwise`;
const mappedPrefixDepthwiseConv = `${mappedPrefix}/depthwise_conv`;
const mappedPrefixPointwiseConv = `${mappedPrefix}/pointwise_conv`;
const filters = extractWeightEntry(`${prefixDepthwiseConv}/depthwise_weights`, 4, `${mappedPrefixDepthwiseConv}/filters`);
const batch_norm_scale = extractWeightEntry(`${prefixDepthwiseConv}/BatchNorm/gamma`, 1, `${mappedPrefixDepthwiseConv}/batch_norm_scale`);
const batch_norm_offset = extractWeightEntry(`${prefixDepthwiseConv}/BatchNorm/beta`, 1, `${mappedPrefixDepthwiseConv}/batch_norm_offset`);
const batch_norm_mean = extractWeightEntry(`${prefixDepthwiseConv}/BatchNorm/moving_mean`, 1, `${mappedPrefixDepthwiseConv}/batch_norm_mean`);
const batch_norm_variance = extractWeightEntry(`${prefixDepthwiseConv}/BatchNorm/moving_variance`, 1, `${mappedPrefixDepthwiseConv}/batch_norm_variance`);
return {
depthwise_conv: {
filters,
batch_norm_scale,
batch_norm_offset,
batch_norm_mean,
batch_norm_variance,
},
pointwise_conv: extractPointwiseConvParams('MobilenetV1', idx, mappedPrefixPointwiseConv),
};
}
function extractMobilenetV1Params(): MobileNetV1.Params {
return {
conv_0: extractPointwiseConvParams('MobilenetV1', 0, 'mobilenetv1/conv_0'),
conv_1: extractConvPairParams(1),
conv_2: extractConvPairParams(2),
conv_3: extractConvPairParams(3),
conv_4: extractConvPairParams(4),
conv_5: extractConvPairParams(5),
conv_6: extractConvPairParams(6),
conv_7: extractConvPairParams(7),
conv_8: extractConvPairParams(8),
conv_9: extractConvPairParams(9),
conv_10: extractConvPairParams(10),
conv_11: extractConvPairParams(11),
conv_12: extractConvPairParams(12),
conv_13: extractConvPairParams(13),
};
}
function extractConvParams(prefix: string, mappedPrefix: string): ConvParams {
const filters = extractWeightEntry(`${prefix}/weights`, 4, `${mappedPrefix}/filters`);
const bias = extractWeightEntry(`${prefix}/biases`, 1, `${mappedPrefix}/bias`);
return { filters, bias };
}
function extractBoxPredictorParams(idx: number): BoxPredictionParams {
const box_encoding_predictor = extractConvParams(
`Prediction/BoxPredictor_${idx}/BoxEncodingPredictor`,
`prediction_layer/box_predictor_${idx}/box_encoding_predictor`,
);
const class_predictor = extractConvParams(
`Prediction/BoxPredictor_${idx}/ClassPredictor`,
`prediction_layer/box_predictor_${idx}/class_predictor`,
);
return { box_encoding_predictor, class_predictor };
}
function extractPredictionLayerParams(): PredictionLayerParams {
return {
conv_0: extractPointwiseConvParams('Prediction', 0, 'prediction_layer/conv_0'),
conv_1: extractPointwiseConvParams('Prediction', 1, 'prediction_layer/conv_1'),
conv_2: extractPointwiseConvParams('Prediction', 2, 'prediction_layer/conv_2'),
conv_3: extractPointwiseConvParams('Prediction', 3, 'prediction_layer/conv_3'),
conv_4: extractPointwiseConvParams('Prediction', 4, 'prediction_layer/conv_4'),
conv_5: extractPointwiseConvParams('Prediction', 5, 'prediction_layer/conv_5'),
conv_6: extractPointwiseConvParams('Prediction', 6, 'prediction_layer/conv_6'),
conv_7: extractPointwiseConvParams('Prediction', 7, 'prediction_layer/conv_7'),
box_predictor_0: extractBoxPredictorParams(0),
box_predictor_1: extractBoxPredictorParams(1),
box_predictor_2: extractBoxPredictorParams(2),
box_predictor_3: extractBoxPredictorParams(3),
box_predictor_4: extractBoxPredictorParams(4),
box_predictor_5: extractBoxPredictorParams(5),
};
}
return {
extractMobilenetV1Params,
extractPredictionLayerParams,
};
}
export function extractParamsFromWeightMap(
weightMap: tf.NamedTensorMap,
): { params: NetParams, paramMappings: ParamMapping[] } {
const paramMappings: ParamMapping[] = [];
const {
extractMobilenetV1Params,
extractPredictionLayerParams,
} = extractorsFactory(weightMap, paramMappings);
const extra_dim = weightMap['Output/extra_dim'];
paramMappings.push({ originalPath: 'Output/extra_dim', paramPath: 'output_layer/extra_dim' });
if (!isTensor3D(extra_dim)) {
throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${extra_dim}`);
}
const params = {
mobilenetv1: extractMobilenetV1Params(),
prediction_layer: extractPredictionLayerParams(),
output_layer: {
extra_dim,
},
};
disposeUnusedWeightTensors(weightMap, paramMappings);
return { params, paramMappings };
}