UNPKG

@vladmandic/face-api

Version:

FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

127 lines (112 loc) 5.77 kB
import * as tf from '../../dist/tfjs.esm'; import { ConvParams, disposeUnusedWeightTensors, extractWeightEntryFactory, ParamMapping } from '../common/index'; import { isTensor3D } from '../utils/index'; import { BoxPredictionParams, MobileNetV1, NetParams, PointwiseConvParams, PredictionLayerParams } from './types'; function extractorsFactory(weightMap: any, paramMappings: ParamMapping[]) { const extractWeightEntry = extractWeightEntryFactory(weightMap, paramMappings); function extractPointwiseConvParams(prefix: string, idx: number, mappedPrefix: string): PointwiseConvParams { const filters = extractWeightEntry(`${prefix}/Conv2d_${idx}_pointwise/weights`, 4, `${mappedPrefix}/filters`); const batch_norm_offset = extractWeightEntry(`${prefix}/Conv2d_${idx}_pointwise/convolution_bn_offset`, 1, `${mappedPrefix}/batch_norm_offset`); return { filters, batch_norm_offset }; } function extractConvPairParams(idx: number): MobileNetV1.ConvPairParams { const mappedPrefix = `mobilenetv1/conv_${idx}`; const prefixDepthwiseConv = `MobilenetV1/Conv2d_${idx}_depthwise`; const mappedPrefixDepthwiseConv = `${mappedPrefix}/depthwise_conv`; const mappedPrefixPointwiseConv = `${mappedPrefix}/pointwise_conv`; const filters = extractWeightEntry(`${prefixDepthwiseConv}/depthwise_weights`, 4, `${mappedPrefixDepthwiseConv}/filters`); const batch_norm_scale = extractWeightEntry(`${prefixDepthwiseConv}/BatchNorm/gamma`, 1, `${mappedPrefixDepthwiseConv}/batch_norm_scale`); const batch_norm_offset = extractWeightEntry(`${prefixDepthwiseConv}/BatchNorm/beta`, 1, `${mappedPrefixDepthwiseConv}/batch_norm_offset`); const batch_norm_mean = extractWeightEntry(`${prefixDepthwiseConv}/BatchNorm/moving_mean`, 1, `${mappedPrefixDepthwiseConv}/batch_norm_mean`); const batch_norm_variance = extractWeightEntry(`${prefixDepthwiseConv}/BatchNorm/moving_variance`, 1, `${mappedPrefixDepthwiseConv}/batch_norm_variance`); return { depthwise_conv: { filters, batch_norm_scale, batch_norm_offset, batch_norm_mean, batch_norm_variance, }, pointwise_conv: extractPointwiseConvParams('MobilenetV1', idx, mappedPrefixPointwiseConv), }; } function extractMobilenetV1Params(): MobileNetV1.Params { return { conv_0: extractPointwiseConvParams('MobilenetV1', 0, 'mobilenetv1/conv_0'), conv_1: extractConvPairParams(1), conv_2: extractConvPairParams(2), conv_3: extractConvPairParams(3), conv_4: extractConvPairParams(4), conv_5: extractConvPairParams(5), conv_6: extractConvPairParams(6), conv_7: extractConvPairParams(7), conv_8: extractConvPairParams(8), conv_9: extractConvPairParams(9), conv_10: extractConvPairParams(10), conv_11: extractConvPairParams(11), conv_12: extractConvPairParams(12), conv_13: extractConvPairParams(13), }; } function extractConvParams(prefix: string, mappedPrefix: string): ConvParams { const filters = extractWeightEntry(`${prefix}/weights`, 4, `${mappedPrefix}/filters`); const bias = extractWeightEntry(`${prefix}/biases`, 1, `${mappedPrefix}/bias`); return { filters, bias }; } function extractBoxPredictorParams(idx: number): BoxPredictionParams { const box_encoding_predictor = extractConvParams( `Prediction/BoxPredictor_${idx}/BoxEncodingPredictor`, `prediction_layer/box_predictor_${idx}/box_encoding_predictor`, ); const class_predictor = extractConvParams( `Prediction/BoxPredictor_${idx}/ClassPredictor`, `prediction_layer/box_predictor_${idx}/class_predictor`, ); return { box_encoding_predictor, class_predictor }; } function extractPredictionLayerParams(): PredictionLayerParams { return { conv_0: extractPointwiseConvParams('Prediction', 0, 'prediction_layer/conv_0'), conv_1: extractPointwiseConvParams('Prediction', 1, 'prediction_layer/conv_1'), conv_2: extractPointwiseConvParams('Prediction', 2, 'prediction_layer/conv_2'), conv_3: extractPointwiseConvParams('Prediction', 3, 'prediction_layer/conv_3'), conv_4: extractPointwiseConvParams('Prediction', 4, 'prediction_layer/conv_4'), conv_5: extractPointwiseConvParams('Prediction', 5, 'prediction_layer/conv_5'), conv_6: extractPointwiseConvParams('Prediction', 6, 'prediction_layer/conv_6'), conv_7: extractPointwiseConvParams('Prediction', 7, 'prediction_layer/conv_7'), box_predictor_0: extractBoxPredictorParams(0), box_predictor_1: extractBoxPredictorParams(1), box_predictor_2: extractBoxPredictorParams(2), box_predictor_3: extractBoxPredictorParams(3), box_predictor_4: extractBoxPredictorParams(4), box_predictor_5: extractBoxPredictorParams(5), }; } return { extractMobilenetV1Params, extractPredictionLayerParams, }; } export function extractParamsFromWeightMap( weightMap: tf.NamedTensorMap, ): { params: NetParams, paramMappings: ParamMapping[] } { const paramMappings: ParamMapping[] = []; const { extractMobilenetV1Params, extractPredictionLayerParams, } = extractorsFactory(weightMap, paramMappings); const extra_dim = weightMap['Output/extra_dim']; paramMappings.push({ originalPath: 'Output/extra_dim', paramPath: 'output_layer/extra_dim' }); if (!isTensor3D(extra_dim)) { throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${extra_dim}`); } const params = { mobilenetv1: extractMobilenetV1Params(), prediction_layer: extractPredictionLayerParams(), output_layer: { extra_dim, }, }; disposeUnusedWeightTensors(weightMap, paramMappings); return { params, paramMappings }; }