UNPKG

@vladmandic/face-api

Version:

FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

41 lines (32 loc) 1.34 kB
import * as tf from '../../dist/tfjs.esm'; import { conv, convDown, convNoRelu } from './convLayer'; import { ResidualLayerParams } from './types'; export function residual(x: tf.Tensor4D, params: ResidualLayerParams): tf.Tensor4D { let out = conv(x, params.conv1); out = convNoRelu(out, params.conv2); out = tf.add(out, x); out = tf.relu(out); return out; } export function residualDown(x: tf.Tensor4D, params: ResidualLayerParams): tf.Tensor4D { let out = convDown(x, params.conv1); out = convNoRelu(out, params.conv2); let pooled = tf.avgPool(x, 2, 2, 'valid') as tf.Tensor4D; const zeros = tf.zeros<tf.Rank.R4>(pooled.shape); const isPad = pooled.shape[3] !== out.shape[3]; const isAdjustShape = pooled.shape[1] !== out.shape[1] || pooled.shape[2] !== out.shape[2]; if (isAdjustShape) { const padShapeX = [...out.shape] as [number, number, number, number]; padShapeX[1] = 1; const zerosW = tf.zeros<tf.Rank.R4>(padShapeX); out = tf.concat([out, zerosW], 1); const padShapeY = [...out.shape] as [number, number, number, number]; padShapeY[2] = 1; const zerosH = tf.zeros<tf.Rank.R4>(padShapeY); out = tf.concat([out, zerosH], 2); } pooled = isPad ? tf.concat([pooled, zeros], 3) : pooled; out = tf.add(pooled, out) as tf.Tensor4D; out = tf.relu(out); return out; }