UNPKG

@vladmandic/face-api

Version:

FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

83 lines (63 loc) 3.02 kB
import * as tf from '../../dist/tfjs.esm'; import { fullyConnectedLayer } from '../common/fullyConnectedLayer'; import { NetInput } from '../dom/index'; import { FaceFeatureExtractorParams, IFaceFeatureExtractor, TinyFaceFeatureExtractorParams } from '../faceFeatureExtractor/types'; import { NeuralNetwork } from '../NeuralNetwork'; import { extractParams } from './extractParams'; import { extractParamsFromWeightMap } from './extractParamsFromWeightMap'; import { NetParams } from './types'; import { seperateWeightMaps } from './util'; export abstract class FaceProcessor< TExtractorParams extends FaceFeatureExtractorParams | TinyFaceFeatureExtractorParams > extends NeuralNetwork<NetParams> { protected _faceFeatureExtractor: IFaceFeatureExtractor<TExtractorParams> constructor(_name: string, faceFeatureExtractor: IFaceFeatureExtractor<TExtractorParams>) { super(_name); this._faceFeatureExtractor = faceFeatureExtractor; } public get faceFeatureExtractor(): IFaceFeatureExtractor<TExtractorParams> { return this._faceFeatureExtractor; } protected abstract getDefaultModelName(): string protected abstract getClassifierChannelsIn(): number protected abstract getClassifierChannelsOut(): number public runNet(input: NetInput | tf.Tensor4D): tf.Tensor2D { const { params } = this; if (!params) { throw new Error(`${this._name} - load model before inference`); } return tf.tidy(() => { const bottleneckFeatures = input instanceof NetInput ? this.faceFeatureExtractor.forwardInput(input) : input; return fullyConnectedLayer(bottleneckFeatures.as2D(bottleneckFeatures.shape[0], -1), params.fc); }); } public dispose(throwOnRedispose = true) { this.faceFeatureExtractor.dispose(throwOnRedispose); super.dispose(throwOnRedispose); } public loadClassifierParams(weights: Float32Array) { const { params, paramMappings } = this.extractClassifierParams(weights); this._params = params; this._paramMappings = paramMappings; } public extractClassifierParams(weights: Float32Array) { return extractParams(weights, this.getClassifierChannelsIn(), this.getClassifierChannelsOut()); } protected extractParamsFromWeightMap(weightMap: tf.NamedTensorMap) { const { featureExtractorMap, classifierMap } = seperateWeightMaps(weightMap); this.faceFeatureExtractor.loadFromWeightMap(featureExtractorMap); return extractParamsFromWeightMap(classifierMap); } protected extractParams(weights: Float32Array) { const cIn = this.getClassifierChannelsIn(); const cOut = this.getClassifierChannelsOut(); const classifierWeightSize = (cOut * cIn) + cOut; const featureExtractorWeights = weights.slice(0, weights.length - classifierWeightSize); const classifierWeights = weights.slice(weights.length - classifierWeightSize); this.faceFeatureExtractor.extractWeights(featureExtractorWeights); return this.extractClassifierParams(classifierWeights); } }