@vladmandic/face-api
Version:
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS
83 lines (63 loc) • 3.02 kB
text/typescript
import * as tf from '../../dist/tfjs.esm';
import { fullyConnectedLayer } from '../common/fullyConnectedLayer';
import { NetInput } from '../dom/index';
import { FaceFeatureExtractorParams, IFaceFeatureExtractor, TinyFaceFeatureExtractorParams } from '../faceFeatureExtractor/types';
import { NeuralNetwork } from '../NeuralNetwork';
import { extractParams } from './extractParams';
import { extractParamsFromWeightMap } from './extractParamsFromWeightMap';
import { NetParams } from './types';
import { seperateWeightMaps } from './util';
export abstract class FaceProcessor<
TExtractorParams extends FaceFeatureExtractorParams | TinyFaceFeatureExtractorParams
>
extends NeuralNetwork<NetParams> {
protected _faceFeatureExtractor: IFaceFeatureExtractor<TExtractorParams>
constructor(_name: string, faceFeatureExtractor: IFaceFeatureExtractor<TExtractorParams>) {
super(_name);
this._faceFeatureExtractor = faceFeatureExtractor;
}
public get faceFeatureExtractor(): IFaceFeatureExtractor<TExtractorParams> {
return this._faceFeatureExtractor;
}
protected abstract getDefaultModelName(): string
protected abstract getClassifierChannelsIn(): number
protected abstract getClassifierChannelsOut(): number
public runNet(input: NetInput | tf.Tensor4D): tf.Tensor2D {
const { params } = this;
if (!params) {
throw new Error(`${this._name} - load model before inference`);
}
return tf.tidy(() => {
const bottleneckFeatures = input instanceof NetInput
? this.faceFeatureExtractor.forwardInput(input)
: input;
return fullyConnectedLayer(bottleneckFeatures.as2D(bottleneckFeatures.shape[0], -1), params.fc);
});
}
public dispose(throwOnRedispose = true) {
this.faceFeatureExtractor.dispose(throwOnRedispose);
super.dispose(throwOnRedispose);
}
public loadClassifierParams(weights: Float32Array) {
const { params, paramMappings } = this.extractClassifierParams(weights);
this._params = params;
this._paramMappings = paramMappings;
}
public extractClassifierParams(weights: Float32Array) {
return extractParams(weights, this.getClassifierChannelsIn(), this.getClassifierChannelsOut());
}
protected extractParamsFromWeightMap(weightMap: tf.NamedTensorMap) {
const { featureExtractorMap, classifierMap } = seperateWeightMaps(weightMap);
this.faceFeatureExtractor.loadFromWeightMap(featureExtractorMap);
return extractParamsFromWeightMap(classifierMap);
}
protected extractParams(weights: Float32Array) {
const cIn = this.getClassifierChannelsIn();
const cOut = this.getClassifierChannelsOut();
const classifierWeightSize = (cOut * cIn) + cOut;
const featureExtractorWeights = weights.slice(0, weights.length - classifierWeightSize);
const classifierWeights = weights.slice(weights.length - classifierWeightSize);
this.faceFeatureExtractor.extractWeights(featureExtractorWeights);
return this.extractClassifierParams(classifierWeights);
}
}