UNPKG

@vladmandic/face-api

Version:

FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

53 lines (41 loc) 1.8 kB
import * as tf from '../../dist/tfjs.esm'; import { NetInput, TNetInput, toNetInput } from '../dom/index'; import { NeuralNetwork } from '../NeuralNetwork'; import { normalize } from '../ops/index'; import { denseBlock3 } from './denseBlock'; import { extractParamsFromWeightMapTiny } from './extractParamsFromWeightMapTiny'; import { extractParamsTiny } from './extractParamsTiny'; import { IFaceFeatureExtractor, TinyFaceFeatureExtractorParams } from './types'; export class TinyFaceFeatureExtractor extends NeuralNetwork<TinyFaceFeatureExtractorParams> implements IFaceFeatureExtractor<TinyFaceFeatureExtractorParams> { constructor() { super('TinyFaceFeatureExtractor'); } public forwardInput(input: NetInput): tf.Tensor4D { const { params } = this; if (!params) { throw new Error('TinyFaceFeatureExtractor - load model before inference'); } return tf.tidy(() => { const batchTensor = tf.cast(input.toBatchTensor(112, true), 'float32'); const meanRgb = [122.782, 117.001, 104.298]; const normalized = normalize(batchTensor, meanRgb).div(255) as tf.Tensor4D; let out = denseBlock3(normalized, params.dense0, true); out = denseBlock3(out, params.dense1); out = denseBlock3(out, params.dense2); out = tf.avgPool(out, [14, 14], [2, 2], 'valid'); return out; }); } public async forward(input: TNetInput): Promise<tf.Tensor4D> { return this.forwardInput(await toNetInput(input)); } protected getDefaultModelName(): string { return 'face_feature_extractor_tiny_model'; } protected extractParamsFromWeightMap(weightMap: tf.NamedTensorMap) { return extractParamsFromWeightMapTiny(weightMap); } protected extractParams(weights: Float32Array) { return extractParamsTiny(weights); } }