UNPKG

@vladmandic/face-api

Version:

FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

54 lines (42 loc) 1.79 kB
import * as tf from '../../dist/tfjs.esm'; import { NetInput, TNetInput, toNetInput } from '../dom/index'; import { NeuralNetwork } from '../NeuralNetwork'; import { normalize } from '../ops/index'; import { denseBlock4 } from './denseBlock'; import { extractParams } from './extractParams'; import { extractParamsFromWeightMap } from './extractParamsFromWeightMap'; import { FaceFeatureExtractorParams, IFaceFeatureExtractor } from './types'; export class FaceFeatureExtractor extends NeuralNetwork<FaceFeatureExtractorParams> implements IFaceFeatureExtractor<FaceFeatureExtractorParams> { constructor() { super('FaceFeatureExtractor'); } public forwardInput(input: NetInput): tf.Tensor4D { const { params } = this; if (!params) { throw new Error('FaceFeatureExtractor - load model before inference'); } return tf.tidy(() => { const batchTensor = tf.cast(input.toBatchTensor(112, true), 'float32'); const meanRgb = [122.782, 117.001, 104.298]; const normalized = normalize(batchTensor, meanRgb).div(255) as tf.Tensor4D; let out = denseBlock4(normalized, params.dense0, true); out = denseBlock4(out, params.dense1); out = denseBlock4(out, params.dense2); out = denseBlock4(out, params.dense3); out = tf.avgPool(out, [7, 7], [2, 2], 'valid'); return out; }); } public async forward(input: TNetInput): Promise<tf.Tensor4D> { return this.forwardInput(await toNetInput(input)); } protected getDefaultModelName(): string { return 'face_feature_extractor_model'; } protected extractParamsFromWeightMap(weightMap: tf.NamedTensorMap) { return extractParamsFromWeightMap(weightMap); } protected extractParams(weights: Float32Array) { return extractParams(weights); } }