@vladmandic/face-api
Version:
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS
36 lines (34 loc) • 1.74 kB
text/typescript
import { FaceDetection } from '../classes/FaceDetection';
import { Rect } from '../classes/Rect';
import { env } from '../env/index';
import { createCanvas } from './createCanvas';
import { getContext2dOrThrow } from './getContext2dOrThrow';
import { imageTensorToCanvas } from './imageTensorToCanvas';
import { toNetInput } from './toNetInput';
import { TNetInput } from './types';
/**
* Extracts the image regions containing the detected faces.
*
* @param input The image that face detection has been performed on.
* @param detections The face detection results or face bounding boxes for that image.
* @returns The Canvases of the corresponding image region for each detected face.
*/
export async function extractFaces(input: TNetInput, detections: Array<FaceDetection | Rect>): Promise<HTMLCanvasElement[]> {
const { Canvas } = env.getEnv();
let canvas = input as HTMLCanvasElement;
if (!(input instanceof Canvas)) {
const netInput = await toNetInput(input);
if (netInput.batchSize > 1) throw new Error('extractFaces - batchSize > 1 not supported');
const tensorOrCanvas = netInput.getInput(0);
canvas = tensorOrCanvas instanceof Canvas ? tensorOrCanvas : await imageTensorToCanvas(tensorOrCanvas);
}
const ctx = getContext2dOrThrow(canvas);
const boxes = detections
.map((det) => (det instanceof FaceDetection ? det.forSize(canvas.width, canvas.height).box.floor() : det))
.map((box) => box.clipAtImageBorders(canvas.width, canvas.height));
return boxes.map(({ x, y, width, height }) => {
const faceImg = createCanvas({ width, height });
if (width > 0 && height > 0) getContext2dOrThrow(faceImg).putImageData(ctx.getImageData(x, y, width, height), 0, 0);
return faceImg;
});
}