@vladmandic/face-api
Version:
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS
42 lines (34 loc) • 1.72 kB
text/typescript
import * as tf from '../../dist/tfjs.esm';
import { Rect } from '../classes/index';
import { FaceDetection } from '../classes/FaceDetection';
import { isTensor3D, isTensor4D } from '../utils/index';
/**
* Extracts the tensors of the image regions containing the detected faces.
* Useful if you want to compute the face descriptors for the face images.
* Using this method is faster then extracting a canvas for each face and
* converting them to tensors individually.
*
* @param imageTensor The image tensor that face detection has been performed on.
* @param detections The face detection results or face bounding boxes for that image.
* @returns Tensors of the corresponding image region for each detected face.
*/
export async function extractFaceTensors(imageTensor: tf.Tensor3D | tf.Tensor4D, detections: Array<FaceDetection | Rect>): Promise<tf.Tensor3D[]> {
if (!isTensor3D(imageTensor) && !isTensor4D(imageTensor)) {
throw new Error('extractFaceTensors - expected image tensor to be 3D or 4D');
}
if (isTensor4D(imageTensor) && imageTensor.shape[0] > 1) {
throw new Error('extractFaceTensors - batchSize > 1 not supported');
}
return tf.tidy(() => {
const [imgHeight, imgWidth, numChannels] = imageTensor.shape.slice(isTensor4D(imageTensor) ? 1 : 0);
const boxes = detections
.map((det) => (det instanceof FaceDetection
? det.forSize(imgWidth, imgHeight).box
: det))
.map((box) => box.clipAtImageBorders(imgWidth, imgHeight));
const faceTensors = boxes.map(({
x, y, width, height,
}) => tf.slice3d(imageTensor.as3D(imgHeight, imgWidth, numChannels), [y, x, 0], [height, width, numChannels]));
return faceTensors;
});
}