UNPKG

@vladmandic/face-api

Version:

FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

121 lines (95 loc) 4.25 kB
import * as tf from '../../dist/tfjs.esm'; import { fullyConnectedLayer } from '../common/fullyConnectedLayer'; import { seperateWeightMaps } from '../faceProcessor/util'; import { TinyXception } from '../xception/TinyXception'; import { extractParams } from './extractParams'; import { extractParamsFromWeightMap } from './extractParamsFromWeightMap'; import { AgeAndGenderPrediction, Gender, NetOutput, NetParams } from './types'; import { NeuralNetwork } from '../NeuralNetwork'; import { NetInput, TNetInput, toNetInput } from '../dom/index'; export class AgeGenderNet extends NeuralNetwork<NetParams> { private _faceFeatureExtractor: TinyXception constructor(faceFeatureExtractor: TinyXception = new TinyXception(2)) { super('AgeGenderNet'); this._faceFeatureExtractor = faceFeatureExtractor; } public get faceFeatureExtractor(): TinyXception { return this._faceFeatureExtractor; } public runNet(input: NetInput | tf.Tensor4D): NetOutput { const { params } = this; if (!params) { throw new Error(`${this._name} - load model before inference`); } return tf.tidy(() => { const bottleneckFeatures = input instanceof NetInput ? this.faceFeatureExtractor.forwardInput(input) : input; const pooled = tf.avgPool(bottleneckFeatures, [7, 7], [2, 2], 'valid').as2D(bottleneckFeatures.shape[0], -1); const age = fullyConnectedLayer(pooled, params.fc.age).as1D(); const gender = fullyConnectedLayer(pooled, params.fc.gender); return { age, gender }; }); } public forwardInput(input: NetInput | tf.Tensor4D): NetOutput { return tf.tidy(() => { const { age, gender } = this.runNet(input); return { age, gender: tf.softmax(gender) }; }); } public async forward(input: TNetInput): Promise<NetOutput> { return this.forwardInput(await toNetInput(input)); } public async predictAgeAndGender(input: TNetInput): Promise<AgeAndGenderPrediction | AgeAndGenderPrediction[]> { const netInput = await toNetInput(input); const out = await this.forwardInput(netInput); const ages = tf.unstack(out.age); const genders = tf.unstack(out.gender); const ageAndGenderTensors = ages.map((ageTensor, i) => ({ ageTensor, genderTensor: genders[i], })); const predictionsByBatch = await Promise.all( ageAndGenderTensors.map(async ({ ageTensor, genderTensor }) => { const age = (ageTensor.dataSync())[0]; const probMale = (genderTensor.dataSync())[0]; const isMale = probMale > 0.5; const gender = isMale ? Gender.MALE : Gender.FEMALE; const genderProbability = isMale ? probMale : (1 - probMale); ageTensor.dispose(); genderTensor.dispose(); return { age, gender, genderProbability }; }), ); out.age.dispose(); out.gender.dispose(); return netInput.isBatchInput ? predictionsByBatch as AgeAndGenderPrediction[] : predictionsByBatch[0] as AgeAndGenderPrediction; } protected getDefaultModelName(): string { return 'age_gender_model'; } public dispose(throwOnRedispose = true) { this.faceFeatureExtractor.dispose(throwOnRedispose); super.dispose(throwOnRedispose); } public loadClassifierParams(weights: Float32Array) { const { params, paramMappings } = this.extractClassifierParams(weights); this._params = params; this._paramMappings = paramMappings; } public extractClassifierParams(weights: Float32Array) { return extractParams(weights); } protected extractParamsFromWeightMap(weightMap: tf.NamedTensorMap) { const { featureExtractorMap, classifierMap } = seperateWeightMaps(weightMap); this.faceFeatureExtractor.loadFromWeightMap(featureExtractorMap); return extractParamsFromWeightMap(classifierMap); } protected extractParams(weights: Float32Array) { const classifierWeightSize = (512 * 1 + 1) + (512 * 2 + 2); const featureExtractorWeights = weights.slice(0, weights.length - classifierWeightSize); const classifierWeights = weights.slice(weights.length - classifierWeightSize); this.faceFeatureExtractor.extractWeights(featureExtractorWeights); return this.extractClassifierParams(classifierWeights); } }