UNPKG

@vladmandic/face-api

Version:

FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

203 lines (186 loc) 7.97 kB
import * as faceapi from '../dist/face-api.esm.js'; // configuration options const modelPath = '../model/'; // path to model folder that will be loaded using http // const modelPath = 'https://vladmandic.github.io/face-api/model/'; // path to model folder that will be loaded using http const minScore = 0.2; // minimum score const maxResults = 5; // maximum number of results to return let optionsSSDMobileNet; // helper function to pretty-print json object to string function str(json) { let text = '<font color="lightblue">'; text += json ? JSON.stringify(json).replace(/{|}|"|\[|\]/g, '').replace(/,/g, ', ') : ''; text += '</font>'; return text; } // helper function to print strings to html document as a log function log(...txt) { // eslint-disable-next-line no-console console.log(...txt); const div = document.getElementById('log'); if (div) div.innerHTML += `<br>${txt}`; } // helper function to draw detected faces function drawFaces(canvas, data, fps) { const ctx = canvas.getContext('2d'); if (!ctx) return; ctx.clearRect(0, 0, canvas.width, canvas.height); // draw title ctx.font = 'small-caps 20px "Segoe UI"'; ctx.fillStyle = 'white'; ctx.fillText(`FPS: ${fps}`, 10, 25); for (const person of data) { // draw box around each face ctx.lineWidth = 3; ctx.strokeStyle = 'deepskyblue'; ctx.fillStyle = 'deepskyblue'; ctx.globalAlpha = 0.6; ctx.beginPath(); ctx.rect(person.detection.box.x, person.detection.box.y, person.detection.box.width, person.detection.box.height); ctx.stroke(); ctx.globalAlpha = 1; // const expression = person.expressions.sort((a, b) => Object.values(a)[0] - Object.values(b)[0]); const expression = Object.entries(person.expressions).sort((a, b) => b[1] - a[1]); ctx.fillStyle = 'black'; ctx.fillText(`gender: ${Math.round(100 * person.genderProbability)}% ${person.gender}`, person.detection.box.x, person.detection.box.y - 59); ctx.fillText(`expression: ${Math.round(100 * expression[0][1])}% ${expression[0][0]}`, person.detection.box.x, person.detection.box.y - 41); ctx.fillText(`age: ${Math.round(person.age)} years`, person.detection.box.x, person.detection.box.y - 23); ctx.fillText(`roll:${person.angle.roll.toFixed(3)} pitch:${person.angle.pitch.toFixed(3)} yaw:${person.angle.yaw.toFixed(3)}`, person.detection.box.x, person.detection.box.y - 5); ctx.fillStyle = 'lightblue'; ctx.fillText(`gender: ${Math.round(100 * person.genderProbability)}% ${person.gender}`, person.detection.box.x, person.detection.box.y - 60); ctx.fillText(`expression: ${Math.round(100 * expression[0][1])}% ${expression[0][0]}`, person.detection.box.x, person.detection.box.y - 42); ctx.fillText(`age: ${Math.round(person.age)} years`, person.detection.box.x, person.detection.box.y - 24); ctx.fillText(`roll:${person.angle.roll.toFixed(3)} pitch:${person.angle.pitch.toFixed(3)} yaw:${person.angle.yaw.toFixed(3)}`, person.detection.box.x, person.detection.box.y - 6); // draw face points for each face ctx.globalAlpha = 0.8; ctx.fillStyle = 'lightblue'; const pointSize = 2; for (let i = 0; i < person.landmarks.positions.length; i++) { ctx.beginPath(); ctx.arc(person.landmarks.positions[i].x, person.landmarks.positions[i].y, pointSize, 0, 2 * Math.PI); // ctx.fillText(`${i}`, person.landmarks.positions[i].x + 4, person.landmarks.positions[i].y + 4); ctx.fill(); } } } async function detectVideo(video, canvas) { if (!video || video.paused) return false; const t0 = performance.now(); faceapi .detectAllFaces(video, optionsSSDMobileNet) .withFaceLandmarks() .withFaceExpressions() // .withFaceDescriptors() .withAgeAndGender() .then((result) => { const fps = 1000 / (performance.now() - t0); drawFaces(canvas, result, fps.toLocaleString()); requestAnimationFrame(() => detectVideo(video, canvas)); return true; }) .catch((err) => { log(`Detect Error: ${str(err)}`); return false; }); return false; } // just initialize everything and call main function async function setupCamera() { const video = document.getElementById('video'); const canvas = document.getElementById('canvas'); if (!video || !canvas) return null; let msg = ''; log('Setting up camera'); // setup webcam. note that navigator.mediaDevices requires that page is accessed via https if (!navigator.mediaDevices) { log('Camera Error: access not supported'); return null; } let stream; const constraints = { audio: false, video: { facingMode: 'user', resizeMode: 'crop-and-scale' }, }; if (window.innerWidth > window.innerHeight) constraints.video.width = { ideal: window.innerWidth }; else constraints.video.height = { ideal: window.innerHeight }; try { stream = await navigator.mediaDevices.getUserMedia(constraints); } catch (err) { if (err.name === 'PermissionDeniedError' || err.name === 'NotAllowedError') msg = 'camera permission denied'; else if (err.name === 'SourceUnavailableError') msg = 'camera not available'; log(`Camera Error: ${msg}: ${err.message || err}`); return null; } // @ts-ignore if (stream) video.srcObject = stream; else { log('Camera Error: stream empty'); return null; } const track = stream.getVideoTracks()[0]; const settings = track.getSettings(); if (settings.deviceId) delete settings.deviceId; if (settings.groupId) delete settings.groupId; if (settings.aspectRatio) settings.aspectRatio = Math.trunc(100 * settings.aspectRatio) / 100; log(`Camera active: ${track.label}`); // ${str(constraints)} log(`Camera settings: ${str(settings)}`); canvas.addEventListener('click', () => { // @ts-ignore if (video && video.readyState >= 2) { // @ts-ignore if (video.paused) { // @ts-ignore video.play(); detectVideo(video, canvas); } else { // @ts-ignore video.pause(); } } // @ts-ignore log(`Camera state: ${video.paused ? 'paused' : 'playing'}`); }); return new Promise((resolve) => { video.onloadeddata = async () => { // @ts-ignore canvas.width = video.videoWidth; // @ts-ignore canvas.height = video.videoHeight; // @ts-ignore video.play(); detectVideo(video, canvas); resolve(true); }; }); } async function setupFaceAPI() { // load face-api models // log('Models loading'); // await faceapi.nets.tinyFaceDetector.load(modelPath); // using ssdMobilenetv1 await faceapi.nets.ssdMobilenetv1.load(modelPath); await faceapi.nets.ageGenderNet.load(modelPath); await faceapi.nets.faceLandmark68Net.load(modelPath); await faceapi.nets.faceRecognitionNet.load(modelPath); await faceapi.nets.faceExpressionNet.load(modelPath); optionsSSDMobileNet = new faceapi.SsdMobilenetv1Options({ minConfidence: minScore, maxResults }); // check tf engine state log(`Models loaded: ${str(faceapi.tf.engine().state.numTensors)} tensors`); } async function main() { // initialize tfjs log('FaceAPI WebCam Test'); // if you want to use wasm backend location for wasm binaries must be specified // await faceapi.tf.setWasmPaths('../node_modules/@tensorflow/tfjs-backend-wasm/dist/'); // await faceapi.tf.setBackend('wasm'); // default is webgl backend await faceapi.tf.setBackend('webgl'); await faceapi.tf.enableProdMode(); await faceapi.tf.ENV.set('DEBUG', false); await faceapi.tf.ready(); // check version log(`Version: FaceAPI ${str(faceapi?.version.faceapi || '(not loaded)')} TensorFlow/JS ${str(faceapi?.tf?.version_core || '(not loaded)')} Backend: ${str(faceapi?.tf?.getBackend() || '(not loaded)')}`); // log(`Flags: ${JSON.stringify(faceapi?.tf?.ENV.flags || { tf: 'not loaded' })}`); await setupFaceAPI(); await setupCamera(); } // start processing as soon as page is loaded window.onload = main;