@vladmandic/face-api
Version:
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS
98 lines (85 loc) • 4.16 kB
JavaScript
// @ts-nocheck
const fs = require('fs');
const process = require('process');
const path = require('path');
// eslint-disable-next-line import/no-extraneous-dependencies, node/no-unpublished-require
const log = require('@vladmandic/pilogger');
// eslint-disable-next-line import/no-extraneous-dependencies, node/no-unpublished-require, no-unused-vars, @typescript-eslint/no-unused-vars
const tf = require('@tensorflow/tfjs');
// eslint-disable-next-line import/no-extraneous-dependencies, node/no-unpublished-require
require('@tensorflow/tfjs-backend-wasm');
// eslint-disable-next-line import/no-extraneous-dependencies, node/no-unpublished-require, no-unused-vars
const canvas = require('canvas');
const faceapi = require('../dist/face-api.node-cpu.js'); // this is equivalent to '@vladmandic/faceapi'
const modelPathRoot = '../model';
const imgPathRoot = './demo'; // modify to include your sample images
const minConfidence = 0.15;
const maxResults = 5;
let optionsSSDMobileNet;
async function image(input) {
const img = await canvas.loadImage(input);
const c = canvas.createCanvas(img.width, img.height);
const ctx = c.getContext('2d');
ctx.drawImage(img, 0, 0, img.width, img.height);
// const out = fs.createWriteStream('test.jpg');
// const stream = c.createJPEGStream({ quality: 0.6, progressive: true, chromaSubsampling: true });
// stream.pipe(out);
return c;
}
async function detect(tensor) {
const result = await faceapi
.detectAllFaces(tensor, optionsSSDMobileNet)
.withFaceLandmarks()
.withFaceExpressions()
.withFaceDescriptors()
.withAgeAndGender();
return result;
}
function print(face) {
const expression = Object.entries(face.expressions).reduce((acc, val) => ((val[1] > acc[1]) ? val : acc), ['', 0]);
const box = [face.alignedRect._box._x, face.alignedRect._box._y, face.alignedRect._box._width, face.alignedRect._box._height];
const gender = `Gender: ${Math.round(100 * face.genderProbability)}% ${face.gender}`;
log.data(`Detection confidence: ${Math.round(100 * face.detection._score)}% ${gender} Age: ${Math.round(10 * face.age) / 10} Expression: ${Math.round(100 * expression[1])}% ${expression[0]} Box: ${box.map((a) => Math.round(a))}`);
}
async function main() {
log.header();
log.info('FaceAPI single-process test');
faceapi.env.monkeyPatch({ Canvas: canvas.Canvas, Image: canvas.Image, ImageData: canvas.ImageData });
await faceapi.tf.setBackend('wasm');
await faceapi.tf.enableProdMode();
await faceapi.tf.ENV.set('DEBUG', false);
await faceapi.tf.ready();
log.state(`Version: TensorFlow/JS ${faceapi.tf?.version_core} FaceAPI ${faceapi.version.faceapi} Backend: ${faceapi.tf?.getBackend()}`);
log.info('Loading FaceAPI models');
const modelPath = path.join(__dirname, modelPathRoot);
await faceapi.nets.ssdMobilenetv1.loadFromDisk(modelPath);
await faceapi.nets.ageGenderNet.loadFromDisk(modelPath);
await faceapi.nets.faceLandmark68Net.loadFromDisk(modelPath);
await faceapi.nets.faceRecognitionNet.loadFromDisk(modelPath);
await faceapi.nets.faceExpressionNet.loadFromDisk(modelPath);
optionsSSDMobileNet = new faceapi.SsdMobilenetv1Options({ minConfidence, maxResults });
if (process.argv.length !== 3) {
const t0 = process.hrtime.bigint();
const dir = fs.readdirSync(imgPathRoot);
let numImages = 0;
for (const img of dir) {
if (!img.toLocaleLowerCase().endsWith('.jpg')) continue;
numImages += 1;
const c = await image(path.join(imgPathRoot, img));
const result = await detect(c);
log.data('Image:', img, 'Detected faces:', result.length);
for (const face of result) print(face);
}
const t1 = process.hrtime.bigint();
log.info('Processed', numImages, 'images in', Math.trunc(parseInt(t1 - t0) / 1000 / 1000), 'ms');
} else {
const param = process.argv[2];
if (fs.existsSync(param) || param.startsWith('http:') || param.startsWith('https:')) {
const c = await image(param);
const result = await detect(c);
log.data('Image:', param, 'Detected faces:', result.length);
for (const face of result) print(face);
}
}
}
main();