UNPKG

@vizlabdev/geodesy

Version:
382 lines (294 loc) 17.1 kB
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* UTM / WGS-84 Conversion Functions (c) Chris Veness 2014-2019 */ /* MIT Licence */ /* www.movable-type.co.uk/scripts/latlong-utm-mgrs.html */ /* www.movable-type.co.uk/scripts/geodesy-library.html#utm */ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* eslint-disable indent */ const { LatLonEllipsoidal, Dms } = require('./latlon-ellipsoidal-datum.js'); /** * The Universal Transverse Mercator (UTM) system is a 2-dimensional Cartesian coordinate system * providing locations on the surface of the Earth. * * UTM is a set of 60 transverse Mercator projections, normally based on the WGS-84 ellipsoid. * Within each zone, coordinates are represented as eastings and northings, measures in metres; e.g. * ‘31 N 448251 5411932’. * * This method based on Karney 2011 ‘Transverse Mercator with an accuracy of a few nanometers’, * building on Krüger 1912 ‘Konforme Abbildung des Erdellipsoids in der Ebene’. * * @module utm */ /* Utm - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /** * UTM coordinates, with functions to parse them and convert them to LatLon points. */ class Utm { /** * Creates a Utm coordinate object comprising zone, hemisphere, easting, northing on a given * datum (normally WGS84). * * @param {number} zone - UTM 6° longitudinal zone (1..60 covering 180°W..180°E). * @param {string} hemisphere - N for northern hemisphere, S for southern hemisphere. * @param {number} easting - Easting in metres from false easting (-500km from central meridian). * @param {number} northing - Northing in metres from equator (N) or from false northing -10,000km (S). * @param {LatLon.datums} [datum=WGS84] - Datum UTM coordinate is based on. * @param {number} [convergence=null] - Meridian convergence (bearing of grid north * clockwise from true north), in degrees. * @param {number} [scale=null] - Grid scale factor. * @params {boolean=true} verifyEN - Check easting/northing is within 'normal' values (may be * suppressed for extended coherent coordinates or alternative datums * e.g. ED50 (epsg.io/23029). * @throws {TypeError} Invalid UTM coordinate. * * @example * import Utm from '/js/geodesy/utm.js'; * const utmCoord = new Utm(31, 'N', 448251, 5411932); */ constructor(zone, hemisphere, easting, northing, datum=LatLonEllipsoidal.datums.WGS84, convergence=null, scale=null, verifyEN=true) { if (!(1<=zone && zone<=60)) throw new RangeError(`invalid UTM zone ‘${zone}’`); if (zone != parseInt(zone)) throw new RangeError(`invalid UTM zone ‘${zone}’`); if (typeof hemisphere != 'string' || !hemisphere.match(/[NS]/i)) throw new RangeError(`invalid UTM hemisphere ‘${hemisphere}’`); if (verifyEN) { // range-check E/N values if (!(0<=easting && easting<=1000e3)) throw new RangeError(`invalid UTM easting ‘${easting}’`); if (hemisphere.toUpperCase()=='N' && !(0<=northing && northing<9328094)) throw new RangeError(`invalid UTM northing ‘${northing}’`); if (hemisphere.toUpperCase()=='S' && !(1118414<northing && northing<=10000e3)) throw new RangeError(`invalid UTM northing ‘${northing}’`); } if (!datum || datum.ellipsoid==undefined) throw new TypeError(`unrecognised datum ‘${datum}’`); this.zone = Number(zone); this.hemisphere = hemisphere.toUpperCase(); this.easting = Number(easting); this.northing = Number(northing); this.datum = datum; this.convergence = convergence===null ? null : Number(convergence); this.scale = scale===null ? null : Number(scale); } /** * Converts UTM zone/easting/northing coordinate to latitude/longitude. * * Implements Karney’s method, using Krüger series to order n⁶, giving results accurate to 5nm * for distances up to 3900km from the central meridian. * * @param {Utm} utmCoord - UTM coordinate to be converted to latitude/longitude. * @returns {LatLon} Latitude/longitude of supplied grid reference. * * @example * const grid = new Utm(31, 'N', 448251.795, 5411932.678); * const latlong = grid.toLatLon(); // 48°51′29.52″N, 002°17′40.20″E */ toLatLon() { const { zone: z, hemisphere: h } = this; const falseEasting = 500e3, falseNorthing = 10000e3; const { a, f } = this.datum.ellipsoid; // WGS-84: a = 6378137, f = 1/298.257223563; const k0 = 0.9996; // UTM scale on the central meridian const x = this.easting - falseEasting; // make x ± relative to central meridian const y = h=='S' ? this.northing - falseNorthing : this.northing; // make y ± relative to equator // ---- from Karney 2011 Eq 15-22, 36: const e = Math.sqrt(f*(2-f)); // eccentricity const n = f / (2 - f); // 3rd flattening const n2 = n*n, n3 = n*n2, n4 = n*n3, n5 = n*n4, n6 = n*n5; const A = a/(1+n) * (1 + 1/4*n2 + 1/64*n4 + 1/256*n6); // 2πA is the circumference of a meridian const η = x / (k0*A); const ξ = y / (k0*A); const β = [ null, // note β is one-based array (6th order Krüger expressions) 1/2*n - 2/3*n2 + 37/96*n3 - 1/360*n4 - 81/512*n5 + 96199/604800*n6, 1/48*n2 + 1/15*n3 - 437/1440*n4 + 46/105*n5 - 1118711/3870720*n6, 17/480*n3 - 37/840*n4 - 209/4480*n5 + 5569/90720*n6, 4397/161280*n4 - 11/504*n5 - 830251/7257600*n6, 4583/161280*n5 - 108847/3991680*n6, 20648693/638668800*n6 ]; let ξʹ = ξ; for (let j=1; j<=6; j++) ξʹ -= β[j] * Math.sin(2*j*ξ) * Math.cosh(2*j*η); let ηʹ = η; for (let j=1; j<=6; j++) ηʹ -= β[j] * Math.cos(2*j*ξ) * Math.sinh(2*j*η); const sinhηʹ = Math.sinh(ηʹ); const sinξʹ = Math.sin(ξʹ), cosξʹ = Math.cos(ξʹ); const τʹ = sinξʹ / Math.sqrt(sinhηʹ*sinhηʹ + cosξʹ*cosξʹ); let δτi = null; let τi = τʹ; do { const σi = Math.sinh(e*Math.atanh(e*τi/Math.sqrt(1+τi*τi))); const τiʹ = τi * Math.sqrt(1+σi*σi) - σi * Math.sqrt(1+τi*τi); δτi = (τʹ - τiʹ)/Math.sqrt(1+τiʹ*τiʹ) * (1 + (1-e*e)*τi*τi) / ((1-e*e)*Math.sqrt(1+τi*τi)); τi += δτi; } while (Math.abs(δτi) > 1e-12); // using IEEE 754 δτi -> 0 after 2-3 iterations // note relatively large convergence test as δτi toggles on ±1.12e-16 for eg 31 N 400000 5000000 const τ = τi; const φ = Math.atan(τ); let λ = Math.atan2(sinhηʹ, cosξʹ); // ---- convergence: Karney 2011 Eq 26, 27 let p = 1; for (let j=1; j<=6; j++) p -= 2*j*β[j] * Math.cos(2*j*ξ) * Math.cosh(2*j*η); let q = 0; for (let j=1; j<=6; j++) q += 2*j*β[j] * Math.sin(2*j*ξ) * Math.sinh(2*j*η); const γʹ = Math.atan(Math.tan(ξʹ) * Math.tanh(ηʹ)); const γʺ = Math.atan2(q, p); const γ = γʹ + γʺ; // ---- scale: Karney 2011 Eq 28 const sinφ = Math.sin(φ); const kʹ = Math.sqrt(1 - e*e*sinφ*sinφ) * Math.sqrt(1 + τ*τ) * Math.sqrt(sinhηʹ*sinhηʹ + cosξʹ*cosξʹ); const kʺ = A / a / Math.sqrt(p*p + q*q); const k = k0 * kʹ * kʺ; // ------------ const λ0 = ((z-1)*6 - 180 + 3).toRadians(); // longitude of central meridian λ += λ0; // move λ from zonal to global coordinates // round to reasonable precision const lat = Number(φ.toDegrees().toFixed(14)); // nm precision (1nm = 10^-14°) const lon = Number(λ.toDegrees().toFixed(14)); // (strictly lat rounding should be φ⋅cosφ!) const convergence = Number(γ.toDegrees().toFixed(9)); const scale = Number(k.toFixed(12)); const latLong = new LatLon_Utm(lat, lon, 0, this.datum); // ... and add the convergence and scale into the LatLon object ... wonderful JavaScript! latLong.convergence = convergence; latLong.scale = scale; return latLong; } /** * Parses string representation of UTM coordinate. * * A UTM coordinate comprises (space-separated) * - zone * - hemisphere * - easting * - northing. * * @param {string} utmCoord - UTM coordinate (WGS 84). * @param {Datum} [datum=WGS84] - Datum coordinate is defined in (default WGS 84). * @returns {Utm} Parsed UTM coordinate. * @throws {TypeError} Invalid UTM coordinate. * * @example * const utmCoord = Utm.parse('31 N 448251 5411932'); * // utmCoord: {zone: 31, hemisphere: 'N', easting: 448251, northing: 5411932 } */ static parse(utmCoord, datum=LatLonEllipsoidal.datums.WGS84) { // match separate elements (separated by whitespace) utmCoord = utmCoord.trim().match(/\S+/g); if (utmCoord==null || utmCoord.length!=4) throw new Error(`invalid UTM coordinate ‘${utmCoord}’`); const zone = utmCoord[0], hemisphere = utmCoord[1], easting = utmCoord[2], northing = utmCoord[3]; return new this(zone, hemisphere, easting, northing, datum); // 'new this' as may return subclassed types } /** * Returns a string representation of a UTM coordinate. * * To distinguish from MGRS grid zone designators, a space is left between the zone and the * hemisphere. * * Note that UTM coordinates get rounded, not truncated (unlike MGRS grid references). * * @param {number} [digits=0] - Number of digits to appear after the decimal point (3 ≡ mm). * @returns {string} A string representation of the coordinate. * * @example * const utm = new Utm('31', 'N', 448251, 5411932).toString(4); // 31 N 448251.0000 5411932.0000 */ toString(digits=0) { const z = this.zone.toString().padStart(2, '0'); const h = this.hemisphere; const e = this.easting.toFixed(digits); const n = this.northing.toFixed(digits); return `${z} ${h} ${e} ${n}`; } } /* LatLon_Utm - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /** * Extends LatLon with method to convert LatLon points to UTM coordinates. * * @extends LatLon */ class LatLon_Utm extends LatLonEllipsoidal { /** * Converts latitude/longitude to UTM coordinate. * * Implements Karney’s method, using Krüger series to order n⁶, giving results accurate to 5nm * for distances up to 3900km from the central meridian. * * @param {number} [zoneOverride] - Use specified zone rather than zone within which point lies; * note overriding the UTM zone has the potential to result in negative eastings, and * perverse results within Norway/Svalbard exceptions. * @returns {Utm} UTM coordinate. * @throws {TypeError} Latitude outside UTM limits. * * @example * const latlong = new LatLon(48.8582, 2.2945); * const utmCoord = latlong.toUtm(); // 31 N 448252 5411933 */ toUtm(zoneOverride=undefined) { if (!(-80<=this.lat && this.lat<=84)) throw new RangeError(`latitude ‘${this.lat}’ outside UTM limits`); const falseEasting = 500e3, falseNorthing = 10000e3; let zone = zoneOverride || Math.floor((this.lon+180)/6) + 1; // longitudinal zone let λ0 = ((zone-1)*6 - 180 + 3).toRadians(); // longitude of central meridian // ---- handle Norway/Svalbard exceptions // grid zones are 8° tall; 0°N is offset 10 into latitude bands array const mgrsLatBands = 'CDEFGHJKLMNPQRSTUVWXX'; // X is repeated for 80-84°N const latBand = mgrsLatBands.charAt(Math.floor(this.lat/8+10)); // adjust zone & central meridian for Norway if (zone==31 && latBand=='V' && this.lon>= 3) { zone++; λ0 += (6).toRadians(); } // adjust zone & central meridian for Svalbard if (zone==32 && latBand=='X' && this.lon< 9) { zone--; λ0 -= (6).toRadians(); } if (zone==32 && latBand=='X' && this.lon>= 9) { zone++; λ0 += (6).toRadians(); } if (zone==34 && latBand=='X' && this.lon< 21) { zone--; λ0 -= (6).toRadians(); } if (zone==34 && latBand=='X' && this.lon>=21) { zone++; λ0 += (6).toRadians(); } if (zone==36 && latBand=='X' && this.lon< 33) { zone--; λ0 -= (6).toRadians(); } if (zone==36 && latBand=='X' && this.lon>=33) { zone++; λ0 += (6).toRadians(); } const φ = this.lat.toRadians(); // latitude ± from equator const λ = this.lon.toRadians() - λ0; // longitude ± from central meridian // allow alternative ellipsoid to be specified const ellipsoid = this.datum ? this.datum.ellipsoid : LatLonEllipsoidal.ellipsoids.WGS84; const { a, f } = ellipsoid; // WGS-84: a = 6378137, f = 1/298.257223563; const k0 = 0.9996; // UTM scale on the central meridian // ---- easting, northing: Karney 2011 Eq 7-14, 29, 35: const e = Math.sqrt(f*(2-f)); // eccentricity const n = f / (2 - f); // 3rd flattening const n2 = n*n, n3 = n*n2, n4 = n*n3, n5 = n*n4, n6 = n*n5; const cosλ = Math.cos(λ), sinλ = Math.sin(λ), tanλ = Math.tan(λ); const τ = Math.tan(φ); // τ ≡ tanφ, τʹ ≡ tanφʹ; prime (ʹ) indicates angles on the conformal sphere const σ = Math.sinh(e*Math.atanh(e*τ/Math.sqrt(1+τ*τ))); const τʹ = τ*Math.sqrt(1+σ*σ) - σ*Math.sqrt(1+τ*τ); const ξʹ = Math.atan2(τʹ, cosλ); const ηʹ = Math.asinh(sinλ / Math.sqrt(τʹ*τʹ + cosλ*cosλ)); const A = a/(1+n) * (1 + 1/4*n2 + 1/64*n4 + 1/256*n6); // 2πA is the circumference of a meridian const α = [ null, // note α is one-based array (6th order Krüger expressions) 1/2*n - 2/3*n2 + 5/16*n3 + 41/180*n4 - 127/288*n5 + 7891/37800*n6, 13/48*n2 - 3/5*n3 + 557/1440*n4 + 281/630*n5 - 1983433/1935360*n6, 61/240*n3 - 103/140*n4 + 15061/26880*n5 + 167603/181440*n6, 49561/161280*n4 - 179/168*n5 + 6601661/7257600*n6, 34729/80640*n5 - 3418889/1995840*n6, 212378941/319334400*n6 ]; let ξ = ξʹ; for (let j=1; j<=6; j++) ξ += α[j] * Math.sin(2*j*ξʹ) * Math.cosh(2*j*ηʹ); let η = ηʹ; for (let j=1; j<=6; j++) η += α[j] * Math.cos(2*j*ξʹ) * Math.sinh(2*j*ηʹ); let x = k0 * A * η; let y = k0 * A * ξ; // ---- convergence: Karney 2011 Eq 23, 24 let pʹ = 1; for (let j=1; j<=6; j++) pʹ += 2*j*α[j] * Math.cos(2*j*ξʹ) * Math.cosh(2*j*ηʹ); let qʹ = 0; for (let j=1; j<=6; j++) qʹ += 2*j*α[j] * Math.sin(2*j*ξʹ) * Math.sinh(2*j*ηʹ); const γʹ = Math.atan(τʹ / Math.sqrt(1+τʹ*τʹ)*tanλ); const γʺ = Math.atan2(qʹ, pʹ); const γ = γʹ + γʺ; // ---- scale: Karney 2011 Eq 25 const sinφ = Math.sin(φ); const kʹ = Math.sqrt(1 - e*e*sinφ*sinφ) * Math.sqrt(1 + τ*τ) / Math.sqrt(τʹ*τʹ + cosλ*cosλ); const kʺ = A / a * Math.sqrt(pʹ*pʹ + qʹ*qʹ); const k = k0 * kʹ * kʺ; // ------------ // shift x/y to false origins x = x + falseEasting; // make x relative to false easting if (y < 0) y = y + falseNorthing; // make y in southern hemisphere relative to false northing // round to reasonable precision x = Number(x.toFixed(9)); // nm precision y = Number(y.toFixed(9)); // nm precision const convergence = Number(γ.toDegrees().toFixed(9)); const scale = Number(k.toFixed(12)); const h = this.lat>=0 ? 'N' : 'S'; // hemisphere return new Utm(zone, h, x, y, this.datum, convergence, scale, !!zoneOverride); } } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ module.exports.Utm = Utm; module.exports.LatLon = LatLon_Utm; module.exports.Dms = Dms;