UNPKG

@versatil/sdlc-framework

Version:

🚀 AI-Native SDLC framework with 11-MCP ecosystem, RAG memory, OPERA orchestration, and 6 specialized agents achieving ZERO CONTEXT LOSS. Features complete CI/CD pipeline with 7 GitHub workflows (MCP testing, security scanning, performance benchmarking),

454 lines (384 loc) • 13.6 kB
# VERSATIL SDLC Framework - RAG Implementation Guide with Rule-Aware Patterns ## Enhanced RAG Orchestration with Three Rules Integration This guide provides comprehensive implementation patterns for the VERSATIL RAG system enhanced with rule execution memory and cross-rule learning capabilities. --- ## 🧠 **RULE-AWARE RAG ARCHITECTURE** ### Core Memory Stores with Rule Integration ```typescript interface RuleAwareMemoryStores { // Standard memory stores code: EnhancedVectorMemoryStore; decisions: EnhancedVectorMemoryStore; patterns: EnhancedVectorMemoryStore; ui: EnhancedVectorMemoryStore; errors: EnhancedVectorMemoryStore; learnings: EnhancedVectorMemoryStore; // Rule-specific memory stores rule_execution: EnhancedVectorMemoryStore; cross_rule_optimization: EnhancedVectorMemoryStore; } ``` ### Enhanced Agent Memory with Rule Context ```typescript interface RuleEnhancedAgentMemory extends AgentMemory { ruleId?: string; ruleType?: 'parallel_execution' | 'stress_testing' | 'daily_audit'; ruleContext?: { execution_time: number; resources_used: string[]; conflicts_detected: number; optimization_applied: boolean; }; } ``` --- ## 🔄 **RULE EXECUTION MEMORY PATTERNS** ### 1. Parallel Execution Memory Storage ```typescript // Store parallel execution results for learning await ragOrchestrator.storeRuleExecution('parallel_execution', 'task-batch-001', { success: true, tasksExecuted: 4, avgTime: 2300, collisions: 0, resourceUtilization: 0.75, optimizations: ['resource_balancing', 'conflict_avoidance'] }); ``` ### 2. Stress Testing Memory Storage ```typescript // Store stress test generation and execution results await ragOrchestrator.storeRuleExecution('stress_testing', 'stress-suite-001', { success: true, testsGenerated: 45, testsRun: 42, failuresDetected: 3, coverageImproved: 0.15, duration: 180000, scenarios: ['high_load', 'edge_cases', 'security_boundary'] }); ``` ### 3. Daily Audit Memory Storage ```typescript // Store daily audit results for trend analysis await ragOrchestrator.storeRuleExecution('daily_audit', 'audit-2024-09-29', { success: true, healthScore: 0.94, issuesFound: 2, issuesResolved: 7, trends: { quality: 'improving', performance: 'stable', security: 'excellent' }, recommendations: ['optimize_database_queries', 'update_dependencies'] }); ``` --- ## 🔗 **CROSS-RULE OPTIMIZATION PATTERNS** ### Synergy Detection and Storage ```typescript // Detect and store beneficial rule combinations await ragOrchestrator.storeCrossRuleOptimization( ['parallel_execution', 'stress_testing'], { impact: 0.25, confidence: 0.89, description: 'Running stress tests in parallel improves execution time by 25%', optimization: { strategy: 'parallel_stress_execution', parameters: { max_concurrent: 3, resource_limit: 0.8 }, effectiveness: 0.91 } } ); ``` ### Conflict Prevention Patterns ```typescript // Store conflict detection and resolution strategies await ragOrchestrator.storeCrossRuleOptimization( ['parallel_execution', 'daily_audit'], { impact: -0.15, confidence: 0.94, description: 'Daily audit during parallel execution causes resource contention', resolution: { strategy: 'sequential_scheduling', timing: 'audit_after_parallel_completion', effectiveness: 0.87 } } ); ``` --- ## 📊 **ENHANCED CONTEXT RETRIEVAL** ### Rule-Aware Context Enhancement ```typescript // Get context enhanced with rule execution memory const enhancedContext = await ragOrchestrator.getContextWithRuleMemory( 'maria-qa', { description: 'Implement comprehensive testing for new authentication module', type: 'quality_assurance', priority: 'high' } ); // Enhanced context includes: // - Standard agent memories // - Rule execution history relevant to testing // - Cross-rule optimization insights // - Performance recommendations based on past executions ``` ### Intelligent Rule Recommendation System ```typescript // Get rule-specific insights and recommendations const insights = await ragOrchestrator.getRuleExecutionInsights('stress_testing'); /* Returns: { metrics: { testsGenerated: 450, testsRun: 420, failuresDetected: 23, avgDuration: 165000 }, patterns: [ { id: 'pattern-stress-auth', description: 'Authentication stress tests consistently reveal edge cases', effectiveness: 0.94 } ], crossRuleOptimizations: [ { ruleTypes: ['stress_testing', 'parallel_execution'], impact: 0.25, recommendation: 'Execute stress tests in parallel for 25% time reduction' } ], recommendations: [ 'Focus stress testing on authentication and payment modules', 'Increase edge case coverage for API endpoints', 'Implement automated stress test triggering on critical path changes' ] } */ ``` --- ## 🎯 **PRACTICAL IMPLEMENTATION EXAMPLES** ### Example 1: Smart Parallel Task Distribution ```typescript class SmartParallelOrchestrator { async distributeTasksWithMemory(tasks: Task[]): Promise<ExecutionPlan> { // Get historical parallel execution data const parallelMemories = await this.ragOrchestrator.getRuleExecutionMemories({ description: 'parallel task distribution' }); // Analyze past collision patterns const collisionPatterns = parallelMemories .filter(m => m.content.collisions > 0) .map(m => m.content.conflictPatterns); // Create optimized distribution plan const plan = this.createExecutionPlan(tasks, collisionPatterns); return { tasks: plan, estimatedTime: this.calculateEstimatedTime(plan, parallelMemories), collisionRisk: this.assessCollisionRisk(plan, collisionPatterns), recommendations: this.generateOptimizationRecommendations(plan) }; } } ``` ### Example 2: Adaptive Stress Test Generation ```typescript class AdaptiveStressTestGenerator { async generateTestsWithContext(feature: Feature): Promise<StressTestSuite> { // Get relevant stress testing memories const stressMemories = await this.ragOrchestrator.getRuleExecutionMemories({ description: `stress testing ${feature.type}` }); // Analyze historical effectiveness const effectivePatterns = stressMemories .filter(m => m.content.failuresDetected > 0) .map(m => m.content.testScenarios); // Generate enhanced test suite return { unitTests: this.generateUnitStressTests(feature, effectivePatterns), integrationTests: this.generateIntegrationStressTests(feature, effectivePatterns), performanceTests: this.generatePerformanceStressTests(feature, effectivePatterns), securityTests: this.generateSecurityStressTests(feature, effectivePatterns), edgeCaseTests: this.generateEdgeCaseTests(feature, effectivePatterns) }; } } ``` ### Example 3: Predictive Daily Audit System ```typescript class PredictiveAuditOrchestrator { async runPredictiveAudit(): Promise<AuditReport> { // Get historical audit data const auditMemories = await this.ragOrchestrator.getRuleExecutionMemories({ description: 'daily audit execution' }); // Analyze trends and patterns const trendAnalysis = this.analyzeTrends(auditMemories); const predictiveInsights = this.generatePredictions(trendAnalysis); // Run targeted audit based on predictions const auditResults = await this.runTargetedAudit(predictiveInsights); return { ...auditResults, predictions: predictiveInsights, trends: trendAnalysis, preventiveActions: this.generatePreventiveActions(predictiveInsights) }; } } ``` --- ## 🚀 **ADVANCED RAG FEATURES** ### 1. Dynamic Pattern Recognition ```typescript interface RulePatternDetector { detectParallelExecutionPatterns(memories: AgentMemory[]): ExecutionPattern[]; detectStressTestingPatterns(memories: AgentMemory[]): TestingPattern[]; detectAuditPatterns(memories: AgentMemory[]): AuditPattern[]; detectCrossRulePatterns(memories: AgentMemory[]): CrossRulePattern[]; } ``` ### 2. Intelligent Knowledge Base Updates ```typescript class IntelligentKnowledgeUpdater { async updateKnowledgeBase(ruleExecutionResult: RuleExecutionResult): Promise<void> { // Extract learnings from rule execution const learnings = this.extractLearnings(ruleExecutionResult); // Update relevant memory stores await Promise.all([ this.updateRuleMemory(learnings), this.updateCrossRuleKnowledge(learnings), this.updatePatternDatabase(learnings), this.updateOptimizationStrategies(learnings) ]); // Trigger knowledge consolidation await this.consolidateKnowledge(); } } ``` ### 3. Adaptive Learning System ```typescript class AdaptiveLearningSystem { async adaptToProjectContext(projectMetadata: ProjectMetadata): Promise<void> { // Analyze project characteristics const projectProfile = this.analyzeProject(projectMetadata); // Adapt rule parameters based on project type const adaptedRules = this.adaptRulesForProject(projectProfile); // Update RAG system with project-specific context await this.updateRAGContext(projectProfile, adaptedRules); // Initialize project-specific memory patterns await this.initializeProjectMemories(projectProfile); } } ``` --- ## 📈 **PERFORMANCE OPTIMIZATION STRATEGIES** ### Memory Store Optimization ```typescript class RAGPerformanceOptimizer { async optimizeMemoryStores(): Promise<OptimizationReport> { const optimizations = await Promise.all([ this.optimizeVectorIndexes(), this.compressOldMemories(), this.consolidateRelatedMemories(), this.updateSimilarityThresholds(), this.balanceStoreDistribution() ]); return { indexOptimizations: optimizations[0], compressionResults: optimizations[1], consolidationResults: optimizations[2], thresholdUpdates: optimizations[3], balancingResults: optimizations[4] }; } } ``` ### Query Optimization Patterns ```typescript interface OptimizedQueryStrategy { // Use rule context to enhance query relevance enhanceQueryWithRuleContext(query: string, ruleType?: string): EnhancedQuery; // Implement intelligent result ranking rankResultsByRuleRelevance(results: SearchResult[], context: RuleContext): RankedResult[]; // Apply cross-rule knowledge for better results applyCrossRuleKnowledge(results: SearchResult[]): EnhancedResult[]; } ``` --- ## 🔧 **IMPLEMENTATION CHECKLIST** ### Core RAG Setup - [ ] Initialize enhanced memory stores with rule support - [ ] Configure vector indexing for rule-specific queries - [ ] Set up cross-rule knowledge base structures - [ ] Implement rule execution memory storage - [ ] Create pattern detection algorithms ### Rule Integration - [ ] Connect parallel execution system to RAG - [ ] Integrate stress testing results with memory stores - [ ] Link daily audit system with trend analysis - [ ] Implement cross-rule optimization tracking - [ ] Set up adaptive learning mechanisms ### Performance Optimization - [ ] Configure memory store performance monitoring - [ ] Implement query optimization strategies - [ ] Set up automatic knowledge consolidation - [ ] Create memory cleanup and archiving processes - [ ] Monitor and optimize vector similarity calculations ### Quality Assurance - [ ] Validate rule memory storage accuracy - [ ] Test cross-rule optimization effectiveness - [ ] Verify pattern detection algorithms - [ ] Ensure knowledge base consistency - [ ] Monitor system performance impact --- ## 📚 **INTEGRATION EXAMPLES** ### Example: Full Rule-Aware Development Cycle ```typescript async function runFullDevelopmentCycle(feature: Feature): Promise<DevelopmentResult> { const ragOrchestrator = new AgenticRAGOrchestrator(paths); await ragOrchestrator.initialize(); // 1. Get context with rule memory const context = await ragOrchestrator.getContextWithRuleMemory('versatil-orchestrator', { description: `Implement ${feature.name}`, type: 'feature_development' }); // 2. Execute parallel development tasks const parallelResults = await executeParallelTasks(feature.tasks, context); await ragOrchestrator.storeRuleExecution('parallel_execution', 'dev-cycle-001', parallelResults); // 3. Generate and run stress tests const stressTestResults = await generateAndRunStressTests(feature, context); await ragOrchestrator.storeRuleExecution('stress_testing', 'stress-001', stressTestResults); // 4. Run comprehensive audit const auditResults = await runComprehensiveAudit(feature, context); await ragOrchestrator.storeRuleExecution('daily_audit', 'audit-001', auditResults); // 5. Store cross-rule optimizations discovered const crossRuleInsights = await analyzeCrossRulePerformance([ parallelResults, stressTestResults, auditResults ]); await ragOrchestrator.storeCrossRuleOptimization( ['parallel_execution', 'stress_testing', 'daily_audit'], crossRuleInsights ); return { feature, parallel: parallelResults, testing: stressTestResults, audit: auditResults, optimizations: crossRuleInsights, recommendations: await ragOrchestrator.getRuleExecutionInsights() }; } ``` --- *This RAG implementation guide provides the foundation for building intelligent, rule-aware memory systems that continuously learn and optimize the VERSATIL SDLC Framework's three core rules for maximum development efficiency and quality.* **Last Updated**: 2024-09-29 **Version**: 2.0.0 **Integration Level**: Complete