@versatil/sdlc-framework
Version:
🚀 AI-Native SDLC framework with 11-MCP ecosystem, RAG memory, OPERA orchestration, and 6 specialized agents achieving ZERO CONTEXT LOSS. Features complete CI/CD pipeline with 7 GitHub workflows (MCP testing, security scanning, performance benchmarking),
454 lines (384 loc) • 13.6 kB
Markdown
# VERSATIL SDLC Framework - RAG Implementation Guide with Rule-Aware Patterns
## Enhanced RAG Orchestration with Three Rules Integration
This guide provides comprehensive implementation patterns for the VERSATIL RAG system enhanced with rule execution memory and cross-rule learning capabilities.
---
## 🧠**RULE-AWARE RAG ARCHITECTURE**
### Core Memory Stores with Rule Integration
```typescript
interface RuleAwareMemoryStores {
// Standard memory stores
code: EnhancedVectorMemoryStore;
decisions: EnhancedVectorMemoryStore;
patterns: EnhancedVectorMemoryStore;
ui: EnhancedVectorMemoryStore;
errors: EnhancedVectorMemoryStore;
learnings: EnhancedVectorMemoryStore;
// Rule-specific memory stores
rule_execution: EnhancedVectorMemoryStore;
cross_rule_optimization: EnhancedVectorMemoryStore;
}
```
### Enhanced Agent Memory with Rule Context
```typescript
interface RuleEnhancedAgentMemory extends AgentMemory {
ruleId?: string;
ruleType?: 'parallel_execution' | 'stress_testing' | 'daily_audit';
ruleContext?: {
execution_time: number;
resources_used: string[];
conflicts_detected: number;
optimization_applied: boolean;
};
}
```
---
## 🔄 **RULE EXECUTION MEMORY PATTERNS**
### 1. Parallel Execution Memory Storage
```typescript
// Store parallel execution results for learning
await ragOrchestrator.storeRuleExecution('parallel_execution', 'task-batch-001', {
success: true,
tasksExecuted: 4,
avgTime: 2300,
collisions: 0,
resourceUtilization: 0.75,
optimizations: ['resource_balancing', 'conflict_avoidance']
});
```
### 2. Stress Testing Memory Storage
```typescript
// Store stress test generation and execution results
await ragOrchestrator.storeRuleExecution('stress_testing', 'stress-suite-001', {
success: true,
testsGenerated: 45,
testsRun: 42,
failuresDetected: 3,
coverageImproved: 0.15,
duration: 180000,
scenarios: ['high_load', 'edge_cases', 'security_boundary']
});
```
### 3. Daily Audit Memory Storage
```typescript
// Store daily audit results for trend analysis
await ragOrchestrator.storeRuleExecution('daily_audit', 'audit-2024-09-29', {
success: true,
healthScore: 0.94,
issuesFound: 2,
issuesResolved: 7,
trends: {
quality: 'improving',
performance: 'stable',
security: 'excellent'
},
recommendations: ['optimize_database_queries', 'update_dependencies']
});
```
---
## 🔗 **CROSS-RULE OPTIMIZATION PATTERNS**
### Synergy Detection and Storage
```typescript
// Detect and store beneficial rule combinations
await ragOrchestrator.storeCrossRuleOptimization(
['parallel_execution', 'stress_testing'],
{
impact: 0.25,
confidence: 0.89,
description: 'Running stress tests in parallel improves execution time by 25%',
optimization: {
strategy: 'parallel_stress_execution',
parameters: { max_concurrent: 3, resource_limit: 0.8 },
effectiveness: 0.91
}
}
);
```
### Conflict Prevention Patterns
```typescript
// Store conflict detection and resolution strategies
await ragOrchestrator.storeCrossRuleOptimization(
['parallel_execution', 'daily_audit'],
{
impact: -0.15,
confidence: 0.94,
description: 'Daily audit during parallel execution causes resource contention',
resolution: {
strategy: 'sequential_scheduling',
timing: 'audit_after_parallel_completion',
effectiveness: 0.87
}
}
);
```
---
## 📊 **ENHANCED CONTEXT RETRIEVAL**
### Rule-Aware Context Enhancement
```typescript
// Get context enhanced with rule execution memory
const enhancedContext = await ragOrchestrator.getContextWithRuleMemory(
'maria-qa',
{
description: 'Implement comprehensive testing for new authentication module',
type: 'quality_assurance',
priority: 'high'
}
);
// Enhanced context includes:
// - Standard agent memories
// - Rule execution history relevant to testing
// - Cross-rule optimization insights
// - Performance recommendations based on past executions
```
### Intelligent Rule Recommendation System
```typescript
// Get rule-specific insights and recommendations
const insights = await ragOrchestrator.getRuleExecutionInsights('stress_testing');
/*
Returns:
{
metrics: {
testsGenerated: 450,
testsRun: 420,
failuresDetected: 23,
avgDuration: 165000
},
patterns: [
{
id: 'pattern-stress-auth',
description: 'Authentication stress tests consistently reveal edge cases',
effectiveness: 0.94
}
],
crossRuleOptimizations: [
{
ruleTypes: ['stress_testing', 'parallel_execution'],
impact: 0.25,
recommendation: 'Execute stress tests in parallel for 25% time reduction'
}
],
recommendations: [
'Focus stress testing on authentication and payment modules',
'Increase edge case coverage for API endpoints',
'Implement automated stress test triggering on critical path changes'
]
}
*/
```
---
## 🎯 **PRACTICAL IMPLEMENTATION EXAMPLES**
### Example 1: Smart Parallel Task Distribution
```typescript
class SmartParallelOrchestrator {
async distributeTasksWithMemory(tasks: Task[]): Promise<ExecutionPlan> {
// Get historical parallel execution data
const parallelMemories = await this.ragOrchestrator.getRuleExecutionMemories({
description: 'parallel task distribution'
});
// Analyze past collision patterns
const collisionPatterns = parallelMemories
.filter(m => m.content.collisions > 0)
.map(m => m.content.conflictPatterns);
// Create optimized distribution plan
const plan = this.createExecutionPlan(tasks, collisionPatterns);
return {
tasks: plan,
estimatedTime: this.calculateEstimatedTime(plan, parallelMemories),
collisionRisk: this.assessCollisionRisk(plan, collisionPatterns),
recommendations: this.generateOptimizationRecommendations(plan)
};
}
}
```
### Example 2: Adaptive Stress Test Generation
```typescript
class AdaptiveStressTestGenerator {
async generateTestsWithContext(feature: Feature): Promise<StressTestSuite> {
// Get relevant stress testing memories
const stressMemories = await this.ragOrchestrator.getRuleExecutionMemories({
description: `stress testing ${feature.type}`
});
// Analyze historical effectiveness
const effectivePatterns = stressMemories
.filter(m => m.content.failuresDetected > 0)
.map(m => m.content.testScenarios);
// Generate enhanced test suite
return {
unitTests: this.generateUnitStressTests(feature, effectivePatterns),
integrationTests: this.generateIntegrationStressTests(feature, effectivePatterns),
performanceTests: this.generatePerformanceStressTests(feature, effectivePatterns),
securityTests: this.generateSecurityStressTests(feature, effectivePatterns),
edgeCaseTests: this.generateEdgeCaseTests(feature, effectivePatterns)
};
}
}
```
### Example 3: Predictive Daily Audit System
```typescript
class PredictiveAuditOrchestrator {
async runPredictiveAudit(): Promise<AuditReport> {
// Get historical audit data
const auditMemories = await this.ragOrchestrator.getRuleExecutionMemories({
description: 'daily audit execution'
});
// Analyze trends and patterns
const trendAnalysis = this.analyzeTrends(auditMemories);
const predictiveInsights = this.generatePredictions(trendAnalysis);
// Run targeted audit based on predictions
const auditResults = await this.runTargetedAudit(predictiveInsights);
return {
...auditResults,
predictions: predictiveInsights,
trends: trendAnalysis,
preventiveActions: this.generatePreventiveActions(predictiveInsights)
};
}
}
```
---
## 🚀 **ADVANCED RAG FEATURES**
### 1. Dynamic Pattern Recognition
```typescript
interface RulePatternDetector {
detectParallelExecutionPatterns(memories: AgentMemory[]): ExecutionPattern[];
detectStressTestingPatterns(memories: AgentMemory[]): TestingPattern[];
detectAuditPatterns(memories: AgentMemory[]): AuditPattern[];
detectCrossRulePatterns(memories: AgentMemory[]): CrossRulePattern[];
}
```
### 2. Intelligent Knowledge Base Updates
```typescript
class IntelligentKnowledgeUpdater {
async updateKnowledgeBase(ruleExecutionResult: RuleExecutionResult): Promise<void> {
// Extract learnings from rule execution
const learnings = this.extractLearnings(ruleExecutionResult);
// Update relevant memory stores
await Promise.all([
this.updateRuleMemory(learnings),
this.updateCrossRuleKnowledge(learnings),
this.updatePatternDatabase(learnings),
this.updateOptimizationStrategies(learnings)
]);
// Trigger knowledge consolidation
await this.consolidateKnowledge();
}
}
```
### 3. Adaptive Learning System
```typescript
class AdaptiveLearningSystem {
async adaptToProjectContext(projectMetadata: ProjectMetadata): Promise<void> {
// Analyze project characteristics
const projectProfile = this.analyzeProject(projectMetadata);
// Adapt rule parameters based on project type
const adaptedRules = this.adaptRulesForProject(projectProfile);
// Update RAG system with project-specific context
await this.updateRAGContext(projectProfile, adaptedRules);
// Initialize project-specific memory patterns
await this.initializeProjectMemories(projectProfile);
}
}
```
---
## 📈 **PERFORMANCE OPTIMIZATION STRATEGIES**
### Memory Store Optimization
```typescript
class RAGPerformanceOptimizer {
async optimizeMemoryStores(): Promise<OptimizationReport> {
const optimizations = await Promise.all([
this.optimizeVectorIndexes(),
this.compressOldMemories(),
this.consolidateRelatedMemories(),
this.updateSimilarityThresholds(),
this.balanceStoreDistribution()
]);
return {
indexOptimizations: optimizations[0],
compressionResults: optimizations[1],
consolidationResults: optimizations[2],
thresholdUpdates: optimizations[3],
balancingResults: optimizations[4]
};
}
}
```
### Query Optimization Patterns
```typescript
interface OptimizedQueryStrategy {
// Use rule context to enhance query relevance
enhanceQueryWithRuleContext(query: string, ruleType?: string): EnhancedQuery;
// Implement intelligent result ranking
rankResultsByRuleRelevance(results: SearchResult[], context: RuleContext): RankedResult[];
// Apply cross-rule knowledge for better results
applyCrossRuleKnowledge(results: SearchResult[]): EnhancedResult[];
}
```
---
## 🔧 **IMPLEMENTATION CHECKLIST**
### Core RAG Setup
- [ ] Initialize enhanced memory stores with rule support
- [ ] Configure vector indexing for rule-specific queries
- [ ] Set up cross-rule knowledge base structures
- [ ] Implement rule execution memory storage
- [ ] Create pattern detection algorithms
### Rule Integration
- [ ] Connect parallel execution system to RAG
- [ ] Integrate stress testing results with memory stores
- [ ] Link daily audit system with trend analysis
- [ ] Implement cross-rule optimization tracking
- [ ] Set up adaptive learning mechanisms
### Performance Optimization
- [ ] Configure memory store performance monitoring
- [ ] Implement query optimization strategies
- [ ] Set up automatic knowledge consolidation
- [ ] Create memory cleanup and archiving processes
- [ ] Monitor and optimize vector similarity calculations
### Quality Assurance
- [ ] Validate rule memory storage accuracy
- [ ] Test cross-rule optimization effectiveness
- [ ] Verify pattern detection algorithms
- [ ] Ensure knowledge base consistency
- [ ] Monitor system performance impact
---
## 📚 **INTEGRATION EXAMPLES**
### Example: Full Rule-Aware Development Cycle
```typescript
async function runFullDevelopmentCycle(feature: Feature): Promise<DevelopmentResult> {
const ragOrchestrator = new AgenticRAGOrchestrator(paths);
await ragOrchestrator.initialize();
// 1. Get context with rule memory
const context = await ragOrchestrator.getContextWithRuleMemory('versatil-orchestrator', {
description: `Implement ${feature.name}`,
type: 'feature_development'
});
// 2. Execute parallel development tasks
const parallelResults = await executeParallelTasks(feature.tasks, context);
await ragOrchestrator.storeRuleExecution('parallel_execution', 'dev-cycle-001', parallelResults);
// 3. Generate and run stress tests
const stressTestResults = await generateAndRunStressTests(feature, context);
await ragOrchestrator.storeRuleExecution('stress_testing', 'stress-001', stressTestResults);
// 4. Run comprehensive audit
const auditResults = await runComprehensiveAudit(feature, context);
await ragOrchestrator.storeRuleExecution('daily_audit', 'audit-001', auditResults);
// 5. Store cross-rule optimizations discovered
const crossRuleInsights = await analyzeCrossRulePerformance([
parallelResults, stressTestResults, auditResults
]);
await ragOrchestrator.storeCrossRuleOptimization(
['parallel_execution', 'stress_testing', 'daily_audit'],
crossRuleInsights
);
return {
feature,
parallel: parallelResults,
testing: stressTestResults,
audit: auditResults,
optimizations: crossRuleInsights,
recommendations: await ragOrchestrator.getRuleExecutionInsights()
};
}
```
---
*This RAG implementation guide provides the foundation for building intelligent, rule-aware memory systems that continuously learn and optimize the VERSATIL SDLC Framework's three core rules for maximum development efficiency and quality.*
**Last Updated**: 2024-09-29
**Version**: 2.0.0
**Integration Level**: Complete