UNPKG

@versatil/sdlc-framework

Version:

🚀 AI-Native SDLC framework with 11-MCP ecosystem, RAG memory, OPERA orchestration, and 6 specialized agents achieving ZERO CONTEXT LOSS. Features complete CI/CD pipeline with 7 GitHub workflows (MCP testing, security scanning, performance benchmarking),

86 lines (85 loc) • 2.21 kB
/** * Vertex AI MCP Executor * ✅ PRODUCTION IMPLEMENTATION - Google Cloud Vertex AI + Gemini Integration * * Primary Agents: Dr.AI-ML (ML training, deployment), Marcus-Backend (AI API integration) * * Features: * - Gemini model inference (text, code, multimodal) * - Model deployment and management * - AI model monitoring and optimization * - Vertex AI Platform integration * - Custom model training support * * Official Packages: * - @google-cloud/vertexai (official Google Cloud SDK) * - @google-cloud/aiplatform (platform management) * - vertex-ai-mcp-server (MCP server implementation) */ export interface MCPExecutionResult { success: boolean; data?: any; error?: string; metadata?: { model?: string; timestamp?: string; usage?: { promptTokens?: number; completionTokens?: number; totalTokens?: number; }; [key: string]: any; }; } export declare class VertexAIMCPExecutor { private vertexAI; private projectId; private location; constructor(); /** * Initialize Vertex AI client */ private initializeVertexAI; /** * Execute Vertex AI MCP action * Routes to appropriate Vertex AI operation based on action type */ executeVertexAIMCP(action: string, params?: any): Promise<MCPExecutionResult>; /** * Generate text using Gemini model */ private generateText; /** * Generate code using Gemini Code model */ private generateCode; /** * Analyze code for issues, improvements, security vulnerabilities */ private analyzeCode; /** * Multi-turn chat conversation */ private chat; /** * Generate text embeddings for semantic search */ private generateEmbeddings; /** * Deploy ML model to Vertex AI Platform */ private deployModel; /** * Make prediction using deployed model */ private predict; /** * Get available Gemini models */ listModels(): Promise<string[]>; /** * Cleanup resources */ close(): Promise<void>; } export declare const vertexAIMCPExecutor: VertexAIMCPExecutor;