UNPKG

@ui-tars/sdk

Version:

A powerful cross-platform(ANY device/platform) toolkit for building GUI automation agents for UI-TARS

206 lines (205 loc) 9.4 kB
/** * Copyright (c) 2025 Bytedance, Inc. and its affiliates. * SPDX-License-Identifier: Apache-2.0 */ import openai_0 from "openai"; import { actionParser } from "@ui-tars/action-parser"; import { useContext } from "./context/useContext.mjs"; import { Model } from "./types.mjs"; import { convertToOpenAIMessages, convertToResponseApiInput, isMessageImage, preprocessResizeImage } from "./utils.mjs"; import { DEFAULT_FACTORS } from "./constants.mjs"; import { MAX_PIXELS_DOUBAO, MAX_PIXELS_V1_0, MAX_PIXELS_V1_5, UITarsModelVersion } from "@ui-tars/shared/types"; function _define_property(obj, key, value) { if (key in obj) Object.defineProperty(obj, key, { value: value, enumerable: true, configurable: true, writable: true }); else obj[key] = value; return obj; } class UITarsModel extends Model { get useResponsesApi() { return this.modelConfig.useResponsesApi ?? false; } get factors() { return DEFAULT_FACTORS; } get modelName() { return this.modelConfig.model ?? 'unknown'; } reset() { this.headImageContext = null; } async invokeModelProvider(uiTarsVersion = UITarsModelVersion.V1_0, params, options, headers) { var _result_choices__message, _result_choices_, _result_choices, _result_usage; const { logger } = useContext(); const { messages, previousResponseId } = params; const { baseURL, apiKey, model, max_tokens = uiTarsVersion == UITarsModelVersion.V1_5 ? 65535 : 1000, temperature = 0, top_p = 0.7, ...restOptions } = this.modelConfig; const openai = new openai_0({ ...restOptions, maxRetries: 0, baseURL, apiKey }); const createCompletionPrams = { model, messages, stream: false, seed: null, stop: null, frequency_penalty: null, presence_penalty: null, max_tokens, temperature, top_p }; const createCompletionPramsThinkingVp = { ...createCompletionPrams, thinking: { type: 'disabled' } }; const startTime = Date.now(); if (this.modelConfig.useResponsesApi) { var _this_headImageContext, _this_headImageContext1, _result_usage1; const lastAssistantIndex = messages.findLastIndex((c)=>'assistant' === c.role); logger.info('[ResponseAPI] lastAssistantIndex: ', lastAssistantIndex); const inputs = convertToResponseApiInput(lastAssistantIndex > -1 ? messages.slice(lastAssistantIndex + 1) : messages); const headImageMessageIndex = messages.findIndex(isMessageImage); if ((null == (_this_headImageContext = this.headImageContext) ? void 0 : _this_headImageContext.responseIds.length) && (null == (_this_headImageContext1 = this.headImageContext) ? void 0 : _this_headImageContext1.messageIndex) !== headImageMessageIndex) { logger.info('[ResponseAPI] should [delete]: ', this.headImageContext, 'headImageMessageIndex', headImageMessageIndex); const headImageResponseId = this.headImageContext.responseIds.shift(); if (headImageResponseId) { const deletedResponse = await openai.responses.delete(headImageResponseId, { headers }); logger.info('[ResponseAPI] [deletedResponse]: ', headImageResponseId, deletedResponse); } } let result; let responseId = previousResponseId; for (const input of inputs){ const truncated = JSON.stringify([ input ], (key, value)=>{ if ('string' == typeof value && value.startsWith('data:image/')) return value.slice(0, 50) + '...[truncated]'; return value; }, 2); const responseParams = { input: [ input ], model, temperature, top_p, stream: false, max_output_tokens: max_tokens, ...responseId && { previous_response_id: responseId }, thinking: { type: 'disabled' } }; logger.info('[ResponseAPI] [input]: ', truncated, 'previous_response_id', null == responseParams ? void 0 : responseParams.previous_response_id, 'headImageMessageIndex', headImageMessageIndex); result = await openai.responses.create(responseParams, { ...options, timeout: 30000, headers }); logger.info('[ResponseAPI] [result]: ', result); responseId = null == result ? void 0 : result.id; logger.info('[ResponseAPI] [responseId]: ', responseId); if (responseId && isMessageImage(input)) { var _this_headImageContext2; this.headImageContext = { messageIndex: headImageMessageIndex, responseIds: [ ...(null == (_this_headImageContext2 = this.headImageContext) ? void 0 : _this_headImageContext2.responseIds) || [], responseId ] }; } logger.info('[ResponseAPI] [headImageContext]: ', this.headImageContext); } return { prediction: (null == result ? void 0 : result.output_text) ?? '', costTime: Date.now() - startTime, costTokens: (null == result ? void 0 : null == (_result_usage1 = result.usage) ? void 0 : _result_usage1.total_tokens) ?? 0, responseId }; } const result = await openai.chat.completions.create(createCompletionPramsThinkingVp, { ...options, timeout: 30000, headers }); return { prediction: (null == (_result_choices = result.choices) ? void 0 : null == (_result_choices_ = _result_choices[0]) ? void 0 : null == (_result_choices__message = _result_choices_.message) ? void 0 : _result_choices__message.content) ?? '', costTime: Date.now() - startTime, costTokens: (null == (_result_usage = result.usage) ? void 0 : _result_usage.total_tokens) ?? 0 }; } async invoke(params) { const { conversations, images, screenContext, scaleFactor, uiTarsVersion, headers, previousResponseId } = params; const { logger, signal } = useContext(); null == logger || logger.info(`[UITarsModel] invoke: screenContext=${JSON.stringify(screenContext)}, scaleFactor=${scaleFactor}, uiTarsVersion=${uiTarsVersion}, useResponsesApi=${this.modelConfig.useResponsesApi}`); const maxPixels = uiTarsVersion === UITarsModelVersion.V1_5 ? MAX_PIXELS_V1_5 : uiTarsVersion === UITarsModelVersion.DOUBAO_1_5_15B || uiTarsVersion === UITarsModelVersion.DOUBAO_1_5_20B ? MAX_PIXELS_DOUBAO : MAX_PIXELS_V1_0; const compressedImages = await Promise.all(images.map((image)=>preprocessResizeImage(image, maxPixels))); const messages = convertToOpenAIMessages({ conversations, images: compressedImages }); const startTime = Date.now(); const result = await this.invokeModelProvider(uiTarsVersion, { messages, previousResponseId }, { signal }, headers).catch((e)=>{ null == logger || logger.error('[UITarsModel] error', e); throw e; }).finally(()=>{ null == logger || logger.info(`[UITarsModel cost]: ${Date.now() - startTime}ms`); }); if (!result.prediction) { const err = new Error(); err.name = 'vlm response error'; err.stack = JSON.stringify(result) ?? 'no message'; null == logger || logger.error(err); throw err; } const { prediction, costTime, costTokens, responseId } = result; try { const { parsed: parsedPredictions } = actionParser({ prediction, factor: this.factors, screenContext, scaleFactor, modelVer: uiTarsVersion }); return { prediction, parsedPredictions, costTime, costTokens, responseId }; } catch (error) { null == logger || logger.error('[UITarsModel] error', error); return { prediction, parsedPredictions: [], responseId }; } } constructor(modelConfig){ super(), _define_property(this, "modelConfig", void 0), _define_property(this, "headImageContext", void 0), this.modelConfig = modelConfig, this.headImageContext = null; this.modelConfig = modelConfig; } } export { UITarsModel }; //# sourceMappingURL=Model.mjs.map