UNPKG

@trap_stevo/metrictide

Version:

Unlock powerful analytics through this modular, event-driven solution built for real-time metric tracking, aggregation, and forecasting. Capture actionable trends, segment data with flexible tag structures, and generate predictive insights using built-in

280 lines (279 loc) 11.9 kB
"use strict"; function _typeof(o) { "@babel/helpers - typeof"; return _typeof = "function" == typeof Symbol && "symbol" == typeof Symbol.iterator ? function (o) { return typeof o; } : function (o) { return o && "function" == typeof Symbol && o.constructor === Symbol && o !== Symbol.prototype ? "symbol" : typeof o; }, _typeof(o); } function _createForOfIteratorHelper(r, e) { var t = "undefined" != typeof Symbol && r[Symbol.iterator] || r["@@iterator"]; if (!t) { if (Array.isArray(r) || (t = _unsupportedIterableToArray(r)) || e && r && "number" == typeof r.length) { t && (r = t); var _n = 0, F = function F() {}; return { s: F, n: function n() { return _n >= r.length ? { done: !0 } : { done: !1, value: r[_n++] }; }, e: function e(r) { throw r; }, f: F }; } throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } var o, a = !0, u = !1; return { s: function s() { t = t.call(r); }, n: function n() { var r = t.next(); return a = r.done, r; }, e: function e(r) { u = !0, o = r; }, f: function f() { try { a || null == t["return"] || t["return"](); } finally { if (u) throw o; } } }; } function _toConsumableArray(r) { return _arrayWithoutHoles(r) || _iterableToArray(r) || _unsupportedIterableToArray(r) || _nonIterableSpread(); } function _nonIterableSpread() { throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } function _unsupportedIterableToArray(r, a) { if (r) { if ("string" == typeof r) return _arrayLikeToArray(r, a); var t = {}.toString.call(r).slice(8, -1); return "Object" === t && r.constructor && (t = r.constructor.name), "Map" === t || "Set" === t ? Array.from(r) : "Arguments" === t || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(t) ? _arrayLikeToArray(r, a) : void 0; } } function _iterableToArray(r) { if ("undefined" != typeof Symbol && null != r[Symbol.iterator] || null != r["@@iterator"]) return Array.from(r); } function _arrayWithoutHoles(r) { if (Array.isArray(r)) return _arrayLikeToArray(r); } function _arrayLikeToArray(r, a) { (null == a || a > r.length) && (a = r.length); for (var e = 0, n = Array(a); e < a; e++) n[e] = r[e]; return n; } function _classCallCheck(a, n) { if (!(a instanceof n)) throw new TypeError("Cannot call a class as a function"); } function _defineProperties(e, r) { for (var t = 0; t < r.length; t++) { var o = r[t]; o.enumerable = o.enumerable || !1, o.configurable = !0, "value" in o && (o.writable = !0), Object.defineProperty(e, _toPropertyKey(o.key), o); } } function _createClass(e, r, t) { return r && _defineProperties(e.prototype, r), t && _defineProperties(e, t), Object.defineProperty(e, "prototype", { writable: !1 }), e; } function _toPropertyKey(t) { var i = _toPrimitive(t, "string"); return "symbol" == _typeof(i) ? i : i + ""; } function _toPrimitive(t, r) { if ("object" != _typeof(t) || !t) return t; var e = t[Symbol.toPrimitive]; if (void 0 !== e) { var i = e.call(t, r || "default"); if ("object" != _typeof(i)) return i; throw new TypeError("@@toPrimitive must return a primitive value."); } return ("string" === r ? String : Number)(t); } var _require = require("@trap_stevo/timetide"), toMilliseconds = _require.toMilliseconds; var MetricTrendManager = /*#__PURE__*/function () { function MetricTrendManager() { _classCallCheck(this, MetricTrendManager); this.records = []; } return _createClass(MetricTrendManager, [{ key: "feed", value: function feed(record) { this.records.push(record); } }, { key: "clearRecords", value: function clearRecords() { var records = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : []; if (!records.length) { return 0; } var idsToDelete = new Set(records.map(function (r) { return r.metricID; })); this.records = this.records.filter(function (r) { return !idsToDelete.has(r.metricID); }); return idsToDelete.size; } }, { key: "clear", value: function clear() { this.records = []; } }, { key: "aggregateByName", value: function aggregateByName(name) { var filtered = this.records.filter(function (r) { return r.name === name && typeof r.value === "number"; }); var count = filtered.length; var sum = filtered.reduce(function (acc, r) { return acc + r.value; }, 0); var avg = count > 0 ? sum / count : 0; var min = Math.min.apply(Math, _toConsumableArray(filtered.map(function (r) { return r.value; }))); var max = Math.max.apply(Math, _toConsumableArray(filtered.map(function (r) { return r.value; }))); return { name: name, count: count, sum: sum, avg: avg, min: min, max: max }; } }, { key: "aggregateByType", value: function aggregateByType(type) { var filtered = this.records.filter(function (r) { return r.type === type && typeof r.value === "number"; }); var count = filtered.length; var sum = filtered.reduce(function (acc, r) { return acc + r.value; }, 0); var avg = count > 0 ? sum / count : 0; var min = Math.min.apply(Math, _toConsumableArray(filtered.map(function (r) { return r.value; }))); var max = Math.max.apply(Math, _toConsumableArray(filtered.map(function (r) { return r.value; }))); return { type: type, count: count, sum: sum, avg: avg, min: min, max: max }; } }, { key: "groupByTag", value: function groupByTag(tagKey) { var result = {}; var _iterator = _createForOfIteratorHelper(this.records), _step; try { for (_iterator.s(); !(_step = _iterator.n()).done;) { var _record$tags; var record = _step.value; var key = ((_record$tags = record.tags) === null || _record$tags === void 0 ? void 0 : _record$tags[tagKey]) || "undefined"; if (!result[key]) { result[key] = []; } result[key].push(record); } } catch (err) { _iterator.e(err); } finally { _iterator.f(); } return result; } }, { key: "groupByInterval", value: function groupByInterval(name, interval, rangeMs) { var method = arguments.length > 3 && arguments[3] !== undefined ? arguments[3] : "sum"; var now = Date.now(); var start = now - rangeMs; var step = toMilliseconds(interval); var buckets = {}; var _iterator2 = _createForOfIteratorHelper(this.records), _step2; try { for (_iterator2.s(); !(_step2 = _iterator2.n()).done;) { var record = _step2.value; if (record.name !== name || typeof record.value !== "number") { continue; } if (record.timestamp < start || record.timestamp > now) { continue; } var bucket = Math.floor((record.timestamp - start) / step); if (!buckets[bucket]) { buckets[bucket] = []; } buckets[bucket].push(record.value); } } catch (err) { _iterator2.e(err); } finally { _iterator2.f(); } var points = []; var totalSteps = Math.ceil(rangeMs / step); for (var i = 0; i < totalSteps; i++) { var values = buckets[i] || []; var y = 0; if (method === "sum") { y = values.reduce(function (a, b) { return a + b; }, 0); } if (method === "avg") { y = values.length ? values.reduce(function (a, b) { return a + b; }, 0) / values.length : 0; } if (method === "count") { y = values.length; } if (method === "min") { y = values.length ? Math.min.apply(Math, _toConsumableArray(values)) : 0; } if (method === "max") { y = values.length ? Math.max.apply(Math, _toConsumableArray(values)) : 0; } points.push({ x: start + i * step, y: y }); } return points; } }, { key: "predictNext", value: function predictNext(name) { var _toMilliseconds, _toMilliseconds2; var _ref = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : {}, _ref$interval = _ref.interval, interval = _ref$interval === void 0 ? this.records.length > 100 ? "1m" : "1s" : _ref$interval, _ref$rangeAdjustmentF = _ref.rangeAdjustmentFactor, rangeAdjustmentFactor = _ref$rangeAdjustmentF === void 0 ? 3 : _ref$rangeAdjustmentF, _ref$range = _ref.range, range = _ref$range === void 0 ? "5m" : _ref$range, _ref$stepsAhead = _ref.stepsAhead, stepsAhead = _ref$stepsAhead === void 0 ? Math.max(3, Math.floor(this.records.length / 4)) : _ref$stepsAhead, _ref$method = _ref.method, method = _ref$method === void 0 ? "linear" : _ref$method; var currentRange = (_toMilliseconds = toMilliseconds(range)) !== null && _toMilliseconds !== void 0 ? _toMilliseconds : toMilliseconds("1m"); var now = Date.now(); var step = (_toMilliseconds2 = toMilliseconds(interval)) !== null && _toMilliseconds2 !== void 0 ? _toMilliseconds2 : toMilliseconds("1m"); var start = now - currentRange; var values = []; if (step >= currentRange) { console.log("[MetricTide] ~ Interval larger than range. Adjusting range to ".concat(rangeAdjustmentFactor, "x interval.")); currentRange = step * rangeAdjustmentFactor; } var _iterator3 = _createForOfIteratorHelper(this.records), _step3; try { for (_iterator3.s(); !(_step3 = _iterator3.n()).done;) { var r = _step3.value; if (r.name !== name || typeof r.value !== "number") { continue; } if (r.timestamp >= start && r.timestamp <= now) { var bucket = Math.floor((r.timestamp - start) / step); values[bucket] = values[bucket] || []; values[bucket].push(r.value); } } } catch (err) { _iterator3.e(err); } finally { _iterator3.f(); } var series = values.map(function (group) { return group ? group.reduce(function (a, b) { return a + b; }, 0) / group.length : 0; }); for (var i = 0; i < Math.ceil(currentRange / step); i++) { if (series[i] === undefined) { series[i] = 0; } } var N = series.length; var sumX = series.map(function (_, i) { return i; }).reduce(function (a, b) { return a + b; }, 0); var sumY = series.reduce(function (a, b) { return a + b; }, 0); var sumXY = series.map(function (y, i) { return y * i; }).reduce(function (a, b) { return a + b; }, 0); var sumX2 = series.map(function (_, i) { return i * i; }).reduce(function (a, b) { return a + b; }, 0); var slope = (N * sumXY - sumX * sumY) / (N * sumX2 - sumX * sumX) || 0; var intercept = (sumY - slope * sumX) / N || 0; var predictions = []; for (var _i = 1; _i <= stepsAhead; _i++) { var x = N + _i - 1; predictions.push({ x: now + _i * step, y: intercept + slope * x }); } return { slope: slope, intercept: intercept, historical: series.map(function (y, i) { return { x: start + i * step, y: y }; }), predicted: predictions }; } }]); }(); module.exports = MetricTrendManager;