UNPKG

@thi.ng/k-means

Version:

k-means & k-medians with customizable distance functions and centroid initializations for n-D vectors

29 lines 1.07 kB
import type { Fn } from "@thi.ng/api"; import type { ReadonlyVec } from "@thi.ng/vectors"; /** * Mean-cut clustering, also usable as {@link kmeans} / * {@link KMeansOpts.initial} centroid initialization. Returns up to `k` * centroids for given `samples`. * * @remarks * Only recommended for low-dimensional data. * * @param k * @param samples */ export declare const meanCut: <T extends ReadonlyVec>(k: number, samples: T[]) => import("@thi.ng/vectors").Vec<number>[]; /** * Median-cut clustering, also usable as {@link kmeans} / * {@link KMeansOpts.initial} centroid initialization. Returns up to `k` * centroids for given `samples`. * * @remarks * Only recommended for low-dimensional data. * * @param k * @param samples */ export declare const medianCut: <T extends ReadonlyVec>(k: number, samples: T[]) => import("@thi.ng/vectors").Vec<number>[]; /** @internal */ export declare const computeCutWith: (cut: Fn<ReadonlyVec, number>, samples: ReadonlyVec[], dim: number, depth: number) => ReadonlyVec[][]; //# sourceMappingURL=mean-cut.d.ts.map