@thi.ng/k-means
Version:
k-means & k-medians with customizable distance functions and centroid initializations for n-D vectors
29 lines • 1.07 kB
TypeScript
import type { Fn } from "@thi.ng/api";
import type { ReadonlyVec } from "@thi.ng/vectors";
/**
* Mean-cut clustering, also usable as {@link kmeans} /
* {@link KMeansOpts.initial} centroid initialization. Returns up to `k`
* centroids for given `samples`.
*
* @remarks
* Only recommended for low-dimensional data.
*
* @param k
* @param samples
*/
export declare const meanCut: <T extends ReadonlyVec>(k: number, samples: T[]) => import("@thi.ng/vectors").Vec<number>[];
/**
* Median-cut clustering, also usable as {@link kmeans} /
* {@link KMeansOpts.initial} centroid initialization. Returns up to `k`
* centroids for given `samples`.
*
* @remarks
* Only recommended for low-dimensional data.
*
* @param k
* @param samples
*/
export declare const medianCut: <T extends ReadonlyVec>(k: number, samples: T[]) => import("@thi.ng/vectors").Vec<number>[];
/** @internal */
export declare const computeCutWith: (cut: Fn<ReadonlyVec, number>, samples: ReadonlyVec[], dim: number, depth: number) => ReadonlyVec[][];
//# sourceMappingURL=mean-cut.d.ts.map