@thi.ng/geom
Version:
Functional, polymorphic API for 2D geometry types & SVG generation
159 lines (158 loc) • 4.78 kB
JavaScript
import { peek } from "@thi.ng/arrays/peek";
import { isArray } from "@thi.ng/checks/is-array";
import { isNumber } from "@thi.ng/checks/is-number";
import { defmulti } from "@thi.ng/defmulti/defmulti";
import { sample as _arcVertices } from "@thi.ng/geom-arc/sample";
import { DEFAULT_SAMPLES } from "@thi.ng/geom-resample/api";
import { resample } from "@thi.ng/geom-resample/resample";
import { sampleCubic } from "@thi.ng/geom-splines/cubic-sample";
import { sampleQuadratic } from "@thi.ng/geom-splines/quadratic-sample";
import { cossin } from "@thi.ng/math/angle";
import { TAU } from "@thi.ng/math/api";
import { add2, add3 } from "@thi.ng/vectors/add";
import { cartesian2 } from "@thi.ng/vectors/cartesian";
import { madd2 } from "@thi.ng/vectors/madd";
import { set2 } from "@thi.ng/vectors/set";
import { ComplexPolygon } from "./api/complex-polygon.js";
import { Polygon } from "./api/polygon.js";
import { __dispatch } from "./internal/dispatch.js";
import { __circleOpts, __sampleAttribs } from "./internal/vertices.js";
const vertices = defmulti(
__dispatch,
{
bpatch: "points",
cubic3: "cubic",
group3: "group",
line: "polyline",
line3: "polyline",
path3: "path",
points3: "points",
poly3: "poly",
polyline3: "polyline",
quad: "poly",
quad3: "poly",
quadratic3: "quadratic",
tri: "poly",
tri3: "poly"
},
{
// e +----+ h
// |\ :\
// |f+----+ g
// | | : |
// a +-|--+d|
// \| \|
// b +----+ c
//
aabb: ({ pos, size }) => {
const [px, py, pz] = pos;
const [qx, qy, qz] = add3([], pos, size);
return [
[px, py, pz],
// a
[px, py, qz],
// b
[qx, py, qz],
// c
[qx, py, pz],
// d
[px, qy, pz],
// e
[px, qy, qz],
// f
[qx, qy, qz],
// g
[qx, qy, pz]
// h
];
},
arc: ($, opts) => _arcVertices(
$.pos,
$.r,
$.axis,
$.start,
$.end,
__sampleAttribs(opts, $.attribs)
),
circle: ($, opts = DEFAULT_SAMPLES) => {
opts = __sampleAttribs(opts, $.attribs);
const pos = $.pos;
const r = $.r;
let [num, start, last] = __circleOpts(opts, r);
const delta = TAU / num;
last && num++;
const buf = new Array(num);
for (let i = 0; i < num; i++) {
buf[i] = cartesian2(null, [r, start + i * delta], pos);
}
return buf;
},
complexpoly: ($, opts) => {
const pts = vertices($.boundary, opts);
for (let child of $.children) pts.push(...vertices(child, opts));
return pts;
},
cubic: ($, opts) => sampleCubic($.points, __sampleAttribs(opts, $.attribs)),
ellipse: ($, opts = DEFAULT_SAMPLES) => {
opts = __sampleAttribs(opts, $.attribs);
const buf = [];
const pos = $.pos;
const r = $.r;
let [num, start, last] = __circleOpts(
opts,
Math.max($.r[0], $.r[1])
);
const delta = TAU / num;
last && num++;
for (let i = 0; i < num; i++) {
buf[i] = madd2([], cossin(start + i * delta), r, pos);
}
return buf;
},
extra: () => [],
group: ($, opts) => {
opts = __sampleAttribs(opts, $.attribs);
return $.children.reduce(
(acc, $2) => acc.concat(vertices($2, opts)),
[]
);
},
path: ($, opts) => {
opts = __sampleAttribs(opts, $.attribs);
const _opts = isNumber(opts) ? { num: opts } : opts;
const verts = [];
const $segmentVerts = (segments) => {
const closed = peek(segments)?.type === "z";
for (let n = segments.length - 1, i = 0; i <= n; i++) {
const s = segments[i];
if (!s.geo) continue;
verts.push(
...vertices(s.geo, {
..._opts,
last: !closed && i === n
})
);
}
};
$segmentVerts($.segments);
for (let sub of $.subPaths) $segmentVerts(sub);
return verts;
},
points: ($) => $.points.slice(),
poly: ($, opts) => resample($.points, __sampleAttribs(opts, $.attribs), true, true),
polyline: ($, opts) => resample($.points, __sampleAttribs(opts, $.attribs), false, true),
quadratic: ($, opts) => sampleQuadratic($.points, __sampleAttribs(opts, $.attribs)),
rect: ($, opts) => {
opts = __sampleAttribs(opts, $.attribs);
const p = $.pos;
const q = add2([], p, $.size);
const verts = [set2([], p), [q[0], p[1]], q, [p[0], q[1]]];
return opts != null ? vertices(new Polygon(verts), opts) : verts;
}
}
);
const ensureVertices = (shape) => isArray(shape) ? shape : vertices(shape);
export {
ensureVertices,
vertices
};