UNPKG

@terrazzo/react-color-picker

Version:

React color picker that supports Color Module 4, wide color gamut (WCG), and Display-P3 using WebGL for monitor-accurate colors. Powered by Culori.

7 lines 17.4 kB
/** * Björn Ottosson’s open source implementation of Oklab. * @warning Requires loading `./rgb.js` first to use! */ export declare const OKLAB = "float cbrt(float x) {\n return sign(x) * pow(abs(x), 1.0 / 3.0);\n}\n\nvec4 lab_to_lch(vec4 lab) {\n float chroma = sqrt(lab.y * lab.y + lab.z * lab.z);\n float hue = abs(lab.y) > 0.00001 && abs(lab.z) > 0.00001 ? degrees(atan(lab.z, lab.y)) : 0.0;\n if (hue < 0.0) hue += 360.0;\n return vec4(lab.x, chroma, hue, lab.w);\n}\n\nvec4 lch_to_lab(vec4 lch) {\n // return black if lightness is sufficiently dark\n if (lch.x < 0.00001) {\n return vec4(0.0, 0.0, 0.0, lch.w);\n }\n\n return vec4(\n lch.x,\n lch.y * cos(radians(lch.z)),\n lch.y * sin(radians(lch.z)),\n lch.w\n );\n}\n\nvec4 oklab_to_linear_rgb(vec4 oklab) {\n float l = pow(oklab.x + 0.3963377774 * oklab.y + 0.2158037573 * oklab.z, 3.0);\n float m = pow(oklab.x - 0.1055613458 * oklab.y - 0.0638541728 * oklab.z, 3.0);\n float s = pow(oklab.x - 0.0894841775 * oklab.y - 1.2914855480 * oklab.z, 3.0);\n\n return vec4(\n +4.0767416621 * l - 3.3077115913 * m + 0.2309699292 * s,\n -1.2684380046 * l + 2.6097574011 * m - 0.3413193965 * s,\n -0.0041960863 * l - 0.7034186147 * m + 1.7076147010 * s,\n oklab.w\n );\n}\n\nvec4 linear_rgb_to_oklab(vec4 srgb) {\n float l = cbrt(0.4122214708 * srgb.x + 0.5363325363 * srgb.y + 0.0514459929 * srgb.z);\n float m = cbrt(0.2119034982 * srgb.x + 0.6806995451 * srgb.y + 0.1073969566 * srgb.z);\n float s = cbrt(0.0883024619 * srgb.x + 0.2817188376 * srgb.y + 0.6299787005 * srgb.z);\n\n return vec4(\n 0.2104542553 * l + 0.7936177850 * m - 0.0040720468 * s,\n 1.9779984951 * l - 2.4285922050 * m + 0.4505937099 * s,\n 0.0259040371 * l + 0.7827717662 * m - 0.8086757660 * s,\n srgb.w\n );\n}\n\n// Finds the maximum saturation possible for a given hue that fits in sRGB\n// Saturation here is defined as S = C/L\n// a and b must be normalized so a^2 + b^2 == 1\nfloat compute_max_saturation(float a, float b) {\n // Max saturation will be when one of r, g or b goes below zero.\n\n // Select different coefficients depending on which component goes below zero first\n float k0, k1, k2, k3, k4, wl, wm, ws;\n\n if (-1.88170328 * a - 0.80936493 * b > 1.0) {\n // Red component\n k0 = +1.19086277; k1 = +1.76576728; k2 = +0.59662641; k3 = +0.75515197; k4 = +0.56771245;\n wl = +4.0767416621; wm = -3.3077115913; ws = +0.2309699292;\n }\n else if (1.81444104 * a - 1.19445276 * b > 1.0) {\n // Green component\n k0 = +0.73956515; k1 = -0.45954404; k2 = +0.08285427; k3 = +0.12541070; k4 = +0.14503204;\n wl = -1.2684380046; wm = +2.6097574011; ws = -0.3413193965;\n }\n else {\n // Blue component\n k0 = +1.35733652; k1 = -0.00915799; k2 = -1.15130210; k3 = -0.50559606; k4 = +0.00692167;\n wl = -0.0041960863; wm = -0.7034186147; ws = +1.7076147010;\n }\n\n // Approximate max saturation using a polynomial:\n float S = k0 + k1 * a + k2 * b + k3 * a * a + k4 * a * b;\n\n // Do one step Halley's method to get closer\n // this gives an error less than 10e6, except for some blue hues where the dS/dh is close to infinite\n // this should be sufficient for most applications, otherwise do two/three steps\n\n float k_l = +0.3963377774 * a + 0.2158037573 * b;\n float k_m = -0.1055613458 * a - 0.0638541728 * b;\n float k_s = -0.0894841775 * a - 1.2914855480 * b;\n\n {\n float l_ = 1.0 + S * k_l;\n float m_ = 1.0 + S * k_m;\n float s_ = 1.0 + S * k_s;\n\n float l = l_ * l_ * l_;\n float m = m_ * m_ * m_;\n float s = s_ * s_ * s_;\n\n float l_dS = 3.0 * k_l * l_ * l_;\n float m_dS = 3.0 * k_m * m_ * m_;\n float s_dS = 3.0 * k_s * s_ * s_;\n\n float l_dS2 = 6.0 * k_l * k_l * l_;\n float m_dS2 = 6.0 * k_m * k_m * m_;\n float s_dS2 = 6.0 * k_s * k_s * s_;\n\n float f = wl * l + wm * m + ws * s;\n float f1 = wl * l_dS + wm * m_dS + ws * s_dS;\n float f2 = wl * l_dS2 + wm * m_dS2 + ws * s_dS2;\n\n S = S - f * f1 / (f1 * f1 - 0.5 * f * f2);\n }\n\n return S;\n}\n\n// finds L_cusp and C_cusp for a given hue\n// a and b must be normalized so a^2 + b^2 == 1\nvec2 find_cusp(float a, float b) {\n // First, find the maximum saturation (saturation S = C/L)\n float S_cusp = compute_max_saturation(a, b);\n\n // Convert to linear sRGB to find the first point where at least one of r,g or b >= 1:\n vec4 rgb_at_max = oklab_to_linear_rgb(vec4(1.0, S_cusp * a, S_cusp * b, 1.0));\n float L_cusp = cbrt(1.0 / max(max(rgb_at_max.x, rgb_at_max.y), rgb_at_max.z));\n float C_cusp = L_cusp * S_cusp;\n\n return vec2(L_cusp, C_cusp);\n}\n\n\n// Finds intersection of the line defined by\n// L = L0 * (1 - t) + t * L1;\n// C = t * C1;\n// a and b must be normalized so a^2 + b^2 == 1\nfloat find_gamut_intersection(float a, float b, float L1, float C1, float L0) {\n vec2 cusp = find_cusp(a, b);\n float cusp_l = cusp.x;\n float cusp_c = cusp.y;\n // Find the intersection for upper and lower half seprately\n float t;\n\n // Lower half\n if (((L1 - L0) * cusp_c - (cusp_l - L0) * C1) <= 0.0) {\n t = cusp_c * L0 / (C1 * cusp_l + cusp_c * (L0 - L1));\n }\n // Upper half\n else {\n // First intersect with triangle\n t = cusp_c * (L0 - 1.0) / (C1 * (cusp_l - 1.0) + cusp_c * (L0 - L1));\n\n // Then one step Halley's method\n {\n float dL = L1 - L0;\n float dC = C1;\n\n float k_l = +0.3963377774 * a + 0.2158037573 * b;\n float k_m = -0.1055613458 * a - 0.0638541728 * b;\n float k_s = -0.0894841775 * a - 1.2914855480 * b;\n\n float l_dt = dL + dC * k_l;\n float m_dt = dL + dC * k_m;\n float s_dt = dL + dC * k_s;\n\n // If higher accuracy is required, 2 or 3 iterations of the following block can be used:\n {\n float L = L0 * (1.0 - t) + t * L1;\n float C = t * C1;\n\n float l_ = L + C * k_l;\n float m_ = L + C * k_m;\n float s_ = L + C * k_s;\n\n float l = l_ * l_ * l_;\n float m = m_ * m_ * m_;\n float s = s_ * s_ * s_;\n\n float ldt = 3.0 * l_dt * l_ * l_;\n float mdt = 3.0 * m_dt * m_ * m_;\n float sdt = 3.0 * s_dt * s_ * s_;\n\n float ldt2 = 6.0 * l_dt * l_dt * l_;\n float mdt2 = 6.0 * m_dt * m_dt * m_;\n float sdt2 = 6.0 * s_dt * s_dt * s_;\n\n float r = 4.0767416621 * l - 3.3077115913 * m + 0.2309699292 * s - 1.0;\n float r1 = 4.0767416621 * ldt - 3.3077115913 * mdt + 0.2309699292 * sdt;\n float r2 = 4.0767416621 * ldt2 - 3.3077115913 * mdt2 + 0.2309699292 * sdt2;\n\n float u_r = r1 / (r1 * r1 - 0.5 * r * r2);\n float t_r = -r * u_r;\n\n float g = -1.2684380046 * l + 2.6097574011 * m - 0.3413193965 * s - 1.0;\n float g1 = -1.2684380046 * ldt + 2.6097574011 * mdt - 0.3413193965 * sdt;\n float g2 = -1.2684380046 * ldt2 + 2.6097574011 * mdt2 - 0.3413193965 * sdt2;\n\n float u_g = g1 / (g1 * g1 - 0.5 * g * g2);\n float t_g = -g * u_g;\n\n float b = -0.0041960863 * l - 0.7034186147 * m + 1.7076147010 * s - 1.0;\n float b1 = -0.0041960863 * ldt - 0.7034186147 * mdt + 1.7076147010 * sdt;\n float b2 = -0.0041960863 * ldt2 - 0.7034186147 * mdt2 + 1.7076147010 * sdt2;\n\n float u_b = b1 / (b1 * b1 - 0.5 * b * b2);\n float t_b = -b * u_b;\n\n t_r = u_r >= 0.0 ? t_r : 10.0e5;\n t_g = u_g >= 0.0 ? t_g : 10.0e5;\n t_b = u_b >= 0.0 ? t_b : 10.0e5;\n\n t += min(t_r, min(t_g, t_b));\n }\n }\n }\n\n return t;\n}\n\n// clamp_mode\n// https://bottosson.github.io/posts/gamutclipping/\n// 0 = no clamp (default)\n// 1 = keep lightness, clamp chroma\n// 2 = projection toward point, hue independent\n// 3 = projection toward point, hue dependent\n// 4 = adaptive Lightness, hue independent\n// 5 = adaptive Lightness, hue dependent\nvec4 oklab_to_srgb(vec4 oklab, int clamp_mode) {\n vec4 linear_rgb = oklab_to_linear_rgb(oklab);\n vec4 srgb = linear_rgb_to_srgb(linear_rgb);\n\n // for anything sufficiently dark, return 0,0,0 (rather than negative RGB values)\n if (srgb.x < 0.0001 && srgb.y < 0.0001 && srgb.z < 0.0001) {\n return vec4(0.0, 0.0, 0.0, oklab.w);\n }\n\n // if inside sRGB gamut, return\n if (\n (linear_rgb.x > 0.0 && linear_rgb.x < 1.0 &&\n linear_rgb.y > 0.0 && linear_rgb.y < 1.0 &&\n linear_rgb.z > 0.0 && linear_rgb.z < 1.0) || clamp_mode == 0) {\n return srgb;\n }\n\n float eps = 0.00001;\n float alpha = 0.05; // TODO: allow config?\n float c = max(eps, sqrt(pow(oklab.y, 2.0) + pow(oklab.z, 2.0)));\n float L0 = oklab.x;\n float a = oklab.y / c;\n float b = oklab.z / c;\n\n // 1. keep lightness, clamp chroma\n if (clamp_mode == 1) {\n // The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once.\n L0 = clamp(oklab.x, 0.0, 1.0);\n }\n // 2. projection toward point, hue independent\n else if (clamp_mode == 2) {\n L0 = 0.5;\n }\n // 3. projection toward point, hue dependent\n else if (clamp_mode == 3) {\n L0 = find_cusp(a, b).x;\n }\n // 4. adaptive Lightness, hue independent\n else if (clamp_mode == 4) {\n float Ld = oklab.x - 0.5;\n float e1 = 0.5 + abs(Ld) + alpha * c;\n L0 = 0.5 * (1.0 + sign(Ld) * (e1 - sqrt(pow(e1, 2.0) - 2.0 * abs(Ld))));\n }\n // 5. adaptive Lightness, hue dependent\n else if (clamp_mode == 5) {\n float cusp_l = find_cusp(a, b).x;\n float Ld = oklab.x - cusp_l;\n float k = 2.0 * (Ld >= 0.0 ? 1.0 - cusp_l : cusp_l);\n float e1 = 0.5 * k + abs(Ld) + alpha * c / k;\n L0 = cusp_l + 0.5 * (sign(Ld) * (e1 - sqrt(pow(e1, 2.0) - 2.0 * k * abs(Ld))));\n }\n\n float t = find_gamut_intersection(a, b, oklab.x - 0.1, c, L0);\n float l_clipped = L0 * (1.0 - t) + t * oklab.x;\n float c_clipped = t * c;\n\n vec4 clamped_oklab = vec4(l_clipped, c_clipped * a, c_clipped * b, oklab.w);\n return linear_rgb_to_srgb(oklab_to_linear_rgb(clamped_oklab));\n}\n\nvec4 oklch_to_srgb(vec4 oklch, int clamp_mode) {\n return oklab_to_srgb(lch_to_lab(oklch), clamp_mode);\n}\n\nvec4 srgb_to_oklch(vec4 srgb) {\n vec4 linear_rgb = srgb_to_linear_rgb(srgb);\n vec4 oklab = linear_rgb_to_oklab(linear_rgb);\n return lab_to_lch(oklab);\n}\n"; export declare const OKHSL = "// toe function for L_r\nfloat toe(float x) {\n float k_1 = 0.206;\n float k_2 = 0.03;\n float k_3 = (1.0 + k_1) / (1.0 + k_2);\n return 0.5 * (k_3 * x - k_1 + sqrtf((k_3 * x - k_1) * (k_3 * x - k_1) + 4 * k_2 * k_3 * x));\n}\n\n// inverse toe function for L_r\nfloat toe_inv(float x) {\n float k_1 = 0.206;\n float k_2 = 0.03;\n float k_3 = (1.0 + k_1) / (1.0 + k_2);\n return (x * x + k_1 * x) / (k_3 * (x + k_2));\n}\n\nto_ST(vec2 cusp) {\n float L = cusp.x;\n float C = cusp.y;\n return vec2(C / L, C / (1.0 - L));\n}\n\nokhsv_to_srgb(vec4 hsv) {\n float h = hsv.x;\n float s = hsv.y;\n float v = hsv.z;\n float alpha = hsv.w;\n\n float a_ = cosf(2.0 * pi * h);\n float b_ = sinf(2.0 * pi * h);\n\n LC cusp = find_cusp(a_, b_);\n ST ST_max = to_ST(cusp);\n float S_max = ST_max.x;\n float T_max = ST_max.y;\n float S_0 = 0.5;\n float k = 1 - S_0 / S_max;\n\n // first we compute L and V as if the gamut is a perfect triangle:\n\n // L, C when v==1:\n float L_v = 1 - s * S_0 / (S_0 + T_max - T_max * k * s);\n float C_v = s * T_max * S_0 / (S_0 + T_max - T_max * k * s);\n\n float L = v * L_v;\n float C = v * C_v;\n\n // then we compensate for both toe and the curved top part of the triangle:\n float L_vt = toe_inv(L_v);\n float C_vt = C_v * L_vt / L_v;\n\n float L_new = toe_inv(L);\n C = C * L_new / L;\n L = L_new;\n\n vec4 rgb_scale = oklab_to_linear_srgb(vec4(L_vt, a_ * C_vt, b_ * C_vt, alpha));\n float scale_L = cbrtf(1.0 / fmax(fmax(rgb_scale.x, rgb_scale.y), fmax(rgb_scale.z, 0.0)));\n\n L = L * scale_L;\n C = C * scale_L;\n\n vec4 rgb = oklab_to_linear_srgb(vec4(L, C * a_, C * b_, alpha));\n return vec4(\n srgb_transfer_function(rgb.x),\n srgb_transfer_function(rgb.y),\n srgb_transfer_function(rgb.z),\n rgb.w\n );\n}\n\nvec4 srgb_to_okhsv(vec4 rgb) {\n vec4 lab = linear_srgb_to_oklab(\n srgb_transfer_function_inv(rgb.x),\n srgb_transfer_function_inv(rgb.y),\n srgb_transfer_function_inv(rgb.z),\n rgb.w\n );\n\n float C = sqrtf(lab.y * lab.y + lab.z * lab.z);\n float a_ = lab.y / C;\n float b_ = lab.z / C;\n\n float L = lab.x;\n float h = 0.5 + 0.5 * atan2f(-lab.z, -lab.y) / pi;\n\n vec2 cusp = find_cusp(a_, b_);\n vec2 ST_max = to_ST(cusp);\n float S_max = ST_max.x;\n float T_max = ST_max.y;\n float S_0 = 0.5;\n float k = 1 - S_0 / S_max;\n\n // first we find L_v, C_v, L_vt and C_vt\n\n float t = T_max / (C + L * T_max);\n float L_v = t * L;\n float C_v = t * C;\n\n float L_vt = toe_inv(L_v);\n float C_vt = C_v * L_vt / L_v;\n\n // we can then use these to invert the step that compensates for the toe and the curved top part of the triangle:\n vec4 rgb_scale = oklab_to_linear_srgb(vec4(L_vt, a_ * C_vt, b_ * C_vt, rgb.w));\n float scale_L = cbrtf(1.0 / fmax(fmax(rgb_scale.x, rgb_scale.y), fmax(rgb_scale.z, 0.0)));\n\n L = L / scale_L;\n C = C / scale_L;\n\n C = C * toe(L) / L;\n L = toe(L);\n\n // we can now compute v and s:\n\n float v = L / L_v;\n float s = (S_0 + T_max) * C_v / ((T_max * S_0) + T_max * k * C_v);\n\n return vec4(h, s, v, rgb.w);\n}\n\nvec2 get_ST_mid(float a_, float b_) {\n float S = 0.11516993f + 1.0 / (\n +7.44778970f + 4.15901240f * b_\n + a_ * (-2.19557347f + 1.75198401f * b_\n + a_ * (-2.13704948f - 10.02301043f * b_\n + a_ * (-4.24894561f + 5.38770819f * b_ + 4.69891013f * a_\n )))\n );\n\n float T = 0.11239642f + 1.0 / (\n +1.61320320f - 0.68124379f * b_\n + a_ * (+0.40370612f + 0.90148123f * b_\n + a_ * (-0.27087943f + 0.61223990f * b_\n + a_ * (+0.00299215f - 0.45399568f * b_ - 0.14661872f * a_\n )))\n );\n\n return vec2(S, T);\n}\n\nvec3 get_Cs(float L, float a_, float b_) {\n vec2 cusp = find_cusp(a_, b_);\n\n float C_max = find_gamut_intersection(a_, b_, L, 1, L, cusp);\n vec2 ST_max = to_ST(cusp);\n\n // Scale factor to compensate for the curved part of gamut shape:\n float k = C_max / fmin((L * ST_max.x), (1 - L) * ST_max.y);\n\n float C_mid;\n {\n vec2 ST_mid = get_ST_mid(a_, b_);\n\n // Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma.\n float C_a = L * ST_mid.x;\n float C_b = (1.0 - L) * ST_mid.y;\n C_mid = 0.9f * k * sqrtf(sqrtf(1.0 / (1.0 / (C_a * C_a * C_a * C_a) + 1.0 / (C_b * C_b * C_b * C_b))));\n }\n\n float C_0;\n {\n // for C_0, the shape is independent of hue, so ST are constant. Values picked to roughly be the average values of ST.\n float C_a = L * 0.4;\n float C_b = (1.0 - L) * 0.8;\n\n // Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma.\n C_0 = sqrtf(1.0 / (1.0 / (C_a * C_a) + 1.0 / (C_b * C_b)));\n }\n\n return vec3(C_0, C_mid, C_max);\n}\n\nvec4 okhsl_to_srgb(vec4 hsl) {\n float h = hsl.x;\n float s = hsl.y;\n float l = hsl.z;\n\n if (l == 1.0) {\n return vec4(1.0, 1.0, 1.0, hsl.w);\n }\n\n else if (l == 0.0) {\n return vec4(0.0, 0.0, 0.0, hsl.w);\n }\n\n float a_ = cosf(2.0 * pi * h);\n float b_ = sinf(2.0 * pi * h);\n float L = toe_inv(l);\n\n vec3 cs = get_Cs(L, a_, b_);\n float C_0 = cs.x;\n float C_mid = cs.y;\n float C_max = cs.z;\n\n // Interpolate the three values for C so that:\n // At s=0: dC/ds = C_0, C=0\n // At s=0.8: C=C_mid\n // At s=1.0: C=C_max\n\n float mid = 0.8;\n float mid_inv = 1.25;\n\n float C, t, k_0, k_1, k_2;\n\n if (s < mid) {\n t = mid_inv * s;\n\n k_1 = mid * C_0;\n k_2 = (1.0 - k_1 / C_mid);\n\n C = t * k_1 / (1.0 - k_2 * t);\n } else {\n t = (s - mid)/ (1 - mid);\n\n k_0 = C_mid;\n k_1 = (1.0 - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;\n k_2 = (1.0 - (k_1) / (C_max - C_mid));\n\n C = k_0 + t * k_1 / (1.0 - k_2 * t);\n }\n\n vec4 rgb = oklab_to_linear_srgb(vec4(L, C * a_, C * b_, hsl.w));\n return {\n srgb_transfer_function(rgb.x),\n srgb_transfer_function(rgb.y),\n srgb_transfer_function(rgb.z),\n hsl.w\n };\n}\n\nvec4 srgb_to_okhsl(vec4 rgb) {\n vec4 lab = linear_srgb_to_oklab(\n srgb_transfer_function_inv(rgb.x),\n srgb_transfer_function_inv(rgb.y),\n srgb_transfer_function_inv(rgb.z),\n rgb.w\n });\n\n float C = sqrtf(lab.y * lab.y + lab.z * lab.z);\n float a_ = lab.y / C;\n float b_ = lab.y / C;\n\n float L = lab.x;\n float h = 0.5 + 0.5 * atan2f(-lab.z, -lab.y) / pi;\n\n vec2 cs = get_Cs(L, a_, b_);\n float C_0 = cs.x;\n float C_mid = cs.y;\n float C_max = cs.z;\n\n // Inverse of the interpolation in okhsl_to_srgb:\n\n float mid = 0.8;\n float mid_inv = 1.25;\n\n float s;\n if (C < C_mid) {\n float k_1 = mid * C_0;\n float k_2 = (1.0 - k_1 / C_mid);\n\n float t = C / (k_1 + k_2 * C);\n s = t * mid;\n } else {\n float k_0 = C_mid;\n float k_1 = (1.0 - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;\n float k_2 = (1.0 - (k_1) / (C_max - C_mid));\n\n float t = (C - k_0) / (k_1 + k_2 * (C - k_0));\n s = mid + (1.0 - mid) * t;\n }\n\n float l = toe(L);\n return vec4(h, s, l, rgb.w);\n}"; //# sourceMappingURL=oklab.d.ts.map