UNPKG

@tensorflow/tfjs

Version:

An open-source machine learning framework.

144 lines (114 loc) 4.57 kB
#!/usr/bin/env node /** * @license * Copyright 2020 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * Entry point for cli tool to build custom tfjs modules */ import * as fs from 'fs'; import * as path from 'path'; import * as yargs from 'yargs'; import {OP_SCOPE_SUFFIX} from '@tensorflow/tfjs-core'; import {bail} from './util'; import {CustomTFJSBundleConfig, SupportedBackends, ModuleProvider} from './types'; import {getModuleProvider} from './esm_module_provider'; // Will be configured when loading the config file. let moduleProvider: ModuleProvider; const BASE_PATH = process.env.BASE_PATH || process.cwd(); const DEFAULT_CUSTOM_BUNDLE_ARGS: Partial<CustomTFJSBundleConfig> = { entries: [], models: [], kernels: [], forwardModeOnly: true, backends: ['cpu', 'webgl'], moduleOptions: {}, }; const argParser = yargs.options({ config: { description: 'Path to custom module config file.', type: 'string', demandOption: true } }); const args = argParser.argv; function validateArgs(): CustomTFJSBundleConfig { let configFilePath = args.config; if (configFilePath == null) { bail(`Error: no config file passed`); } configFilePath = path.resolve(BASE_PATH, configFilePath); if (!fs.existsSync(configFilePath)) { bail(`Error: config file does not exist at ${configFilePath}`); } let config; try { config = JSON.parse(fs.readFileSync(configFilePath, 'utf-8')); } catch (error) { bail(`Error could not read/parse JSON config file. \n ${error.message}`); } if (config.outputPath == null) { bail('Error: config must specify "outputPath" property'); } console.log(`Using custom module configuration from ${configFilePath}.`); const finalConfig = Object.assign({}, DEFAULT_CUSTOM_BUNDLE_ARGS, config); if (finalConfig.entries.length !== 0) { bail('Error: config.entries not yet supported'); } // if (finalConfig.models.length !== 0) { // TODO validate that all these paths exist. // bail('Error: config.models not yet supported'); // } for (const requestedBackend of finalConfig.backends) { if (requestedBackend !== SupportedBackends.cpu && requestedBackend !== SupportedBackends.webgl && requestedBackend !== SupportedBackends.wasm) { bail(`Error: Unsupported backend specified '${requestedBackend}'`); } } // Normalize the paths to absolute paths. function normalizePath(p: string) { return path.resolve(BASE_PATH, p); } finalConfig.models = finalConfig.models.map(normalizePath); finalConfig.entries = finalConfig.entries.map(normalizePath); finalConfig.normalizedOutputPath = normalizePath(finalConfig.outputPath); moduleProvider = getModuleProvider(finalConfig.moduleOptions); console.log('Final Configuration', finalConfig); return finalConfig; } function getKernelNamesForConfig(config: CustomTFJSBundleConfig) { // Later on this will do a union of kernels from entries, models and // kernels, (and kernels used by the converter itself) Currently we only // support directly listing kernels. remember that this also needs to handle // kernels used by gradients if forwardModeOnly is false. // Ops in core that are implemented as custom ops may appear in tf.profile // they will have __op as a suffix. These do not have corresponding backend // kernels so we need to filter them out. function isNotCustomOp(kernelName: string) { // opSuffix value is defined in tfjs-core/src/operation.ts // duplicating it here to avoid an export. return !kernelName.endsWith(OP_SCOPE_SUFFIX); } return config.kernels.filter(isNotCustomOp); } const customConfig = validateArgs(); const kernelsToInclude = getKernelNamesForConfig(customConfig); customConfig.kernels = kernelsToInclude; if (moduleProvider != null) { moduleProvider.produceCustomTFJSModule(customConfig); } else { throw new Error('No module provider has been initialized.'); }