@tensorflow/tfjs
Version:
An open-source machine learning framework.
185 lines (133 loc) • 7.76 kB
Markdown
is an open-source hardware-accelerated JavaScript library for
training and deploying machine learning models.
**Develop ML in the Browser** <br/>
Use flexible and intuitive APIs to build models from scratch using the low-level
JavaScript linear algebra library or the high-level layers API.
**Develop ML in Node.js** <br/>
Execute native TensorFlow with the same TensorFlow.js API under the Node.js
runtime.
**Run Existing models** <br/>
Use TensorFlow.js model converters to run pre-existing TensorFlow models right
in the browser.
**Retrain Existing models** <br/>
Retrain pre-existing ML models using sensor data connected to the browser or
other client-side data.
This repository contains the logic and scripts that combine
several packages.
APIs:
- [TensorFlow.js Core](/tfjs-core),
a flexible low-level API for neural networks and numerical computation.
- [TensorFlow.js Layers](/tfjs-layers),
a high-level API which implements functionality similar to
[ ](https://keras.io/).
- [TensorFlow.js Data](/tfjs-data),
a simple API to load and prepare data analogous to
[ ](https://www.tensorflow.org/guide/datasets).
- [TensorFlow.js Converter](/tfjs-converter),
tools to import a TensorFlow SavedModel to TensorFlow.js
- [TensorFlow.js Vis](/tfjs-vis),
in-browser visualization for TensorFlow.js models
- [TensorFlow.js AutoML](/tfjs-automl),
Set of APIs to load and run models produced by
[ ](https://cloud.google.com/vision/automl/docs/edge-quickstart).
Backends/Platforms:
- [TensorFlow.js CPU Backend](/tfjs-backend-cpu), pure-JS backend for Node.js and the browser.
- [TensorFlow.js WebGL Backend](/tfjs-backend-webgl), WebGL backend for the browser.
- [TensorFlow.js WASM Backend](/tfjs-backend-wasm), WebAssembly backend for the browser.
- [TensorFlow.js WebGPU](/tfjs-backend-webgpu), WebGPU backend for the browser.
- [TensorFlow.js Node](/tfjs-node), Node.js platform via TensorFlow C++ adapter.
- [TensorFlow.js React Native](/tfjs-react-native), React Native platform via expo-gl adapter.
If you care about bundle size, you can import those packages individually.
If you are looking for Node.js support, check out the [TensorFlow.js Node directory](/tfjs-node).
Check out our
[ ](https://github.com/tensorflow/tfjs-examples)
and our [tutorials](https://js.tensorflow.org/tutorials/).
Be sure to check out [the gallery](GALLERY.md) of all projects related to TensorFlow.js.
Be sure to also check out our [models repository](https://github.com/tensorflow/tfjs-models) where we host pre-trained models
on NPM.
* [Local benchmark tool](https://tfjs-benchmarks.web.app/). Use this webpage tool to collect the performance related metrics (speed, memory, etc) of TensorFlow.js models and kernels **on your local device** with CPU, WebGL or WASM backends. You can benchmark custom models by following this [guide](https://github.com/tensorflow/tfjs/blob/master/e2e/benchmarks/local-benchmark/README.md).
* [Multi-device benchmark tool](https://github.com/tensorflow/tfjs/tree/master/e2e/benchmarks/browserstack-benchmark/README.md). Use this tool to collect the same performance related metrics **on a collection of remote devices**.
There are two main ways to get TensorFlow.js in your JavaScript project:
via <a href="https://developer.mozilla.org/en-US/docs/Learn/HTML/Howto/Use_JavaScript_within_a_webpage" target="_blank">script tags</a> <strong>or</strong> by installing it from <a href="https://www.npmjs.com/" target="_blank">NPM</a>
and using a build tool like <a href="https://parceljs.org/" target="_blank">Parcel</a>,
<a href="https://webpack.js.org/" target="_blank">WebPack</a>, or <a href="https://rollupjs.org/guide/en" target="_blank">Rollup</a>.
Add the following code to an HTML file:
```html
<html>
<head>
<!-- Load TensorFlow.js -->
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs/dist/tf.min.js"> </script>
<!-- Place your code in the script tag below. You can also use an external .js file -->
<script>
// Notice there is no 'import' statement. 'tf' is available on the index-page
// because of the script tag above.
// Define a model for linear regression.
const model = tf.sequential();
model.add(tf.layers.dense({units: 1, inputShape: [1]}));
// Prepare the model for training: Specify the loss and the optimizer.
model.compile({loss: 'meanSquaredError', optimizer: 'sgd'});
// Generate some synthetic data for training.
const xs = tf.tensor2d([1, 2, 3, 4], [4, 1]);
const ys = tf.tensor2d([1, 3, 5, 7], [4, 1]);
// Train the model using the data.
model.fit(xs, ys).then(() => {
// Use the model to do inference on a data point the model hasn't seen before:
// Open the browser devtools to see the output
model.predict(tf.tensor2d([5], [1, 1])).print();
});
</script>
</head>
<body>
</body>
</html>
```
Open up that HTML file in your browser, and the code should run!
Add TensorFlow.js to your project using <a href="https://yarnpkg.com/en/" target="_blank">yarn</a> <em>or</em> <a href="https://docs.npmjs.com/cli/npm" target="_blank">npm</a>. <b>Note:</b> Because
we use ES2017 syntax (such as `import`), this workflow assumes you are using a modern browser or a bundler/transpiler
to convert your code to something older browsers understand. See our
<a href='https://github.com/tensorflow/tfjs-examples' target="_blank">examples</a>
to see how we use <a href="https://parceljs.org/" target="_blank">Parcel</a> to build
our code. However, you are free to use any build tool that you prefer.
```js
import * as tf from '@tensorflow/tfjs';
// Define a model for linear regression.
const model = tf.sequential();
model.add(tf.layers.dense({units: 1, inputShape: [1]}));
// Prepare the model for training: Specify the loss and the optimizer.
model.compile({loss: 'meanSquaredError', optimizer: 'sgd'});
// Generate some synthetic data for training.
const xs = tf.tensor2d([1, 2, 3, 4], [4, 1]);
const ys = tf.tensor2d([1, 3, 5, 7], [4, 1]);
// Train the model using the data.
model.fit(xs, ys).then(() => {
// Use the model to do inference on a data point the model hasn't seen before:
model.predict(tf.tensor2d([5], [1, 1])).print();
});
```
See our <a href="https://js.tensorflow.org/tutorials/" target="_blank">tutorials</a>, <a href="https://github.com/tensorflow/tfjs-examples" target="_blank">examples</a>
and <a href="https://js.tensorflow.org/api/latest/">documentation</a> for more details.
We support porting pre-trained models from:
- [TensorFlow SavedModel](https://www.tensorflow.org/js/tutorials/conversion/import_saved_model)
- [Keras](https://js.tensorflow.org/tutorials/import-keras.html)
Please refer below :
- [TFJS Ops Matrix](https://docs.google.com/spreadsheets/d/1D25XtWaBrmUEErbGQB0QmNhH-xtwHo9LDl59w0TbxrI/edit#gid=0)
[ ](https://js.tensorflow.org) is a part of the
[ ](https://www.tensorflow.org) ecosystem. For more info:
- For help from the community, use the `tfjs` tag on the [TensorFlow Forum](https://discuss.tensorflow.org/tag/tfjs).
- [TensorFlow.js Website](https://js.tensorflow.org)
- [Tutorials](https://js.tensorflow.org/tutorials)
- [API reference](https://js.tensorflow.org/api/latest/)
- [TensorFlow.js Blog](https://blog.tensorflow.org/search?label=TensorFlow.js)
Thanks, <a href="https://www.browserstack.com/">BrowserStack</a>, for providing testing support.
TensorFlow.js