@tensorflow/tfjs-node
Version:
This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).
88 lines (72 loc) • 2.52 kB
text/typescript
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {backend_util} from '@tensorflow/tfjs';
export declare class TensorMetadata {
id: number;
shape: number[];
dtype: number;
}
export declare class TFEOpAttr {
name: string;
type: number;
value: boolean|number|object|string|number[];
}
export interface TFJSBinding {
TensorMetadata: typeof TensorMetadata;
TFEOpAttr: typeof TFEOpAttr;
// Creates a tensor with the backend.
createTensor(
shape: number[], dtype: number,
buffer: backend_util.BackendValues): number;
// Deletes a tensor with the backend.
deleteTensor(tensorId: number): void;
// Reads data-sync from a tensor on the backend.
tensorDataSync(tensorId: number): Float32Array|Int32Array|Uint8Array;
// Executes an Op on the backend, returns an array of output TensorMetadata.
executeOp(
opName: string, opAttrs: TFEOpAttr[], inputTensorIds: number[],
numOutputs: number): TensorMetadata[];
// Load a SavedModel from a path.
loadSavedModel(exportDir: string, tags: string): number;
// Remove a SavedModel from memory.
deleteSavedModel(savedModelId: number): void;
// Execute a SavedModel with input, returns an array of output TensorMetadata.
runSavedModel(
savedModelId: number, inputTensorIds: number[], inputOpNames: string,
outputOpNames: string): TensorMetadata[];
getNumOfSavedModels(): number;
getNumOfTensors(): number;
isUsingGpuDevice(): boolean;
// TF Types
TF_FLOAT: number;
TF_INT32: number;
TF_INT64: number;
TF_BOOL: number;
TF_COMPLEX64: number;
TF_STRING: number;
TF_RESOURCE: number;
TF_UINT8: number;
// TF OpAttrTypes
TF_ATTR_STRING: number;
TF_ATTR_INT: number;
TF_ATTR_FLOAT: number;
TF_ATTR_BOOL: number;
TF_ATTR_TYPE: number;
TF_ATTR_SHAPE: number;
TF_ATTR_RESOURCE: number;
TF_Version: string;
}