UNPKG

@tensorflow/tfjs-node

Version:

This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).

88 lines (72 loc) 2.52 kB
/** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ import {backend_util} from '@tensorflow/tfjs'; export declare class TensorMetadata { id: number; shape: number[]; dtype: number; } export declare class TFEOpAttr { name: string; type: number; value: boolean|number|object|string|number[]; } export interface TFJSBinding { TensorMetadata: typeof TensorMetadata; TFEOpAttr: typeof TFEOpAttr; // Creates a tensor with the backend. createTensor( shape: number[], dtype: number, buffer: backend_util.BackendValues): number; // Deletes a tensor with the backend. deleteTensor(tensorId: number): void; // Reads data-sync from a tensor on the backend. tensorDataSync(tensorId: number): Float32Array|Int32Array|Uint8Array; // Executes an Op on the backend, returns an array of output TensorMetadata. executeOp( opName: string, opAttrs: TFEOpAttr[], inputTensorIds: number[], numOutputs: number): TensorMetadata[]; // Load a SavedModel from a path. loadSavedModel(exportDir: string, tags: string): number; // Remove a SavedModel from memory. deleteSavedModel(savedModelId: number): void; // Execute a SavedModel with input, returns an array of output TensorMetadata. runSavedModel( savedModelId: number, inputTensorIds: number[], inputOpNames: string, outputOpNames: string): TensorMetadata[]; getNumOfSavedModels(): number; getNumOfTensors(): number; isUsingGpuDevice(): boolean; // TF Types TF_FLOAT: number; TF_INT32: number; TF_INT64: number; TF_BOOL: number; TF_COMPLEX64: number; TF_STRING: number; TF_RESOURCE: number; TF_UINT8: number; // TF OpAttrTypes TF_ATTR_STRING: number; TF_ATTR_INT: number; TF_ATTR_FLOAT: number; TF_ATTR_BOOL: number; TF_ATTR_TYPE: number; TF_ATTR_SHAPE: number; TF_ATTR_RESOURCE: number; TF_Version: string; }