UNPKG

@tensorflow/tfjs-node

Version:

This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).

141 lines (127 loc) 5.36 kB
/** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ import {Scalar, Tensor, util} from '@tensorflow/tfjs'; import {ensureTensorflowBackend, nodeBackend, NodeJSKernelBackend} from './nodejs_kernel_backend'; export class SummaryFileWriter { backend: NodeJSKernelBackend; constructor(private readonly resourceHandle: Tensor) { ensureTensorflowBackend(); this.backend = nodeBackend(); } /** * Write a scalar summary. * * @param name A name of the summary. The summary tag for TensorBoard will be * this name. * @param value A real numeric scalar value, as `tf.Scalar` or a JavaScript * `number`. * @param step Required `int64`-castable, monotonically-increasing step value. * @param description Optional long-form description for this summary, as a * `string`. *Not implemented yet*. */ scalar( name: string, value: Scalar|number, step: number, description?: string) { // N.B.: Unlike the Python TensorFlow API, step is a required parameter, // because the construct of global step does not exist in TensorFlow.js. if (description != null) { throw new Error('scalar() does not support description yet'); } this.backend.writeScalarSummary(this.resourceHandle, step, name, value); } /** * Write a histogram summary, for later analysis in TensorBoard's 'Histograms' * and 'Distributions' dashboards (data written using this API will appear in * both places). Like `SummaryFileWriter.scalar` points, each histogram is * associated with a `step` and a `name`. All the histograms with the same * `name` constitute a time series of histograms. * * The histogram is calculated over all the elements of the given `Tensor` * without regard to its shape or rank. * * @param name A name for this summary. The summary tag used for TensorBoard * will be this name. * @param data A Tensor of any shape. The histogram is computed over its * elements, which must be castable to `float32`. * @param step Monotonically-increasing step value. * @param buckets Optional positive `number`. The output will have this many * buckets, except in two edge cases. If there is no data, then there are * no buckets. If there is data but all points have the same value, then * there is one bucket whose left and right endpoints are the same. * @param description Optional long-form description for this summary, as a * `string`. Markdown is supported. Defaults to empty. */ histogram( name: string, data: Tensor, step: number, buckets?: number, description?: string) { this.backend.writeHistogramSummary( this.resourceHandle, step, name, data, buckets, description); } /** * Force summary writer to send all buffered data to storage. */ flush() { this.backend.flushSummaryWriter(this.resourceHandle); } } /** * Use a cache for `SummaryFileWriter` instance. * * Using multiple instances of `SummaryFileWriter` pointing to the same * logdir has potential problems. Using this cache avoids those problems. */ const summaryFileWriterCache: {[logdir: string]: SummaryFileWriter} = {}; /** * Create a summary file writer for TensorBoard. * * Example: * ```js * const tf = require('@tensorflow/tfjs-node'); * * const summaryWriter = tf.node.summaryFileWriter('/tmp/tfjs_tb_logdir'); * * for (let step = 0; step < 100; ++step) { * summaryWriter.scalar('dummyValue', Math.sin(2 * Math.PI * step / 8), step); * } * ``` * * @param logdir Log directory in which the summary data will be written. * @param maxQueue Maximum queue length (default: `10`). * @param flushMillis Flush every __ milliseconds (default: `120e3`, i.e, * `120` seconds). * @param filenameSuffix Suffix of the protocol buffer file names to be * written in the `logdir` (default: `.v2`). * @returns An instance of `SummaryFileWriter`. * * @doc {heading: 'TensorBoard', namespace: 'node'} */ export function summaryFileWriter( logdir: string, maxQueue = 10, flushMillis = 120000, filenameSuffix = '.v2'): SummaryFileWriter { util.assert( logdir != null && typeof logdir === 'string' && logdir.length > 0, () => `Invalid logdir: ${logdir}. Expected a non-empty string for logdir.`); if (!(logdir in summaryFileWriterCache)) { ensureTensorflowBackend(); const backend = nodeBackend(); const writerResource = backend.summaryWriter(logdir); backend.createSummaryFileWriter( writerResource, logdir, maxQueue, flushMillis, filenameSuffix); summaryFileWriterCache[logdir] = new SummaryFileWriter(writerResource); } return summaryFileWriterCache[logdir]; }