UNPKG

@tensorflow/tfjs-node

Version:

This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).

465 lines (428 loc) 17.8 kB
/** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ import {DataType, InferenceModel, MetaGraph, ModelPredictConfig, ModelTensorInfo, NamedTensorMap, SignatureDef, SignatureDefEntry, Tensor, util} from '@tensorflow/tfjs'; import * as fs from 'fs'; import {promisify} from 'util'; import {ensureTensorflowBackend, nodeBackend, NodeJSKernelBackend} from './nodejs_kernel_backend'; const readFile = promisify(fs.readFile); // tslint:disable-next-line:no-require-imports const messages = require('./proto/api_pb'); const SAVED_MODEL_FILE_NAME = '/saved_model.pb'; const SAVED_MODEL_INIT_OP_KEY = '__saved_model_init_op'; // This map is used to keep track of loaded SavedModel metagraph mapping // information. The map key is TFSavedModel id in JavaScript, value is // an object of path to the SavedModel, metagraph tags, and loaded Session ID in // the c++ bindings. When user loads a SavedModel signature, it will go through // entries in this map to find if the corresponding SavedModel session has // already been loaded in C++ addon and will reuse it if existing. const loadedSavedModelPathMap = new Map<number, {path: string, tags: string[], sessionId: number}>(); // The ID of loaded TFSavedModel. This ID is used to keep track of loaded // TFSavedModel, so the loaded session in c++ bindings for the corresponding // TFSavedModel can be properly reused/disposed. let nextTFSavedModelId = 0; /** * Get a key in an object by its value. This is used to get protobuf enum value * from index. * * @param object * @param value */ // tslint:disable-next-line:no-any export function getEnumKeyFromValue(object: any, value: number): string { return Object.keys(object).find(key => object[key] === value); } /** * Read SavedModel proto message from path. * * @param path Path to SavedModel folder. */ export async function readSavedModelProto(path: string) { // Load the SavedModel pb file and deserialize it into message. try { fs.accessSync(path + SAVED_MODEL_FILE_NAME, fs.constants.R_OK); } catch (error) { throw new Error( 'There is no saved_model.pb file in the directory: ' + path); } const modelFile = await readFile(path + SAVED_MODEL_FILE_NAME); const array = new Uint8Array(modelFile); return messages.SavedModel.deserializeBinary(array); } /** * Inspect the MetaGraphs of the SavedModel from the provided path. This * function will return an array of `MetaGraphInfo` objects. * * @param path Path to SavedModel folder. * * @doc {heading: 'Models', subheading: 'SavedModel', namespace: 'node'} */ export async function getMetaGraphsFromSavedModel(path: string): Promise<MetaGraph[]> { const result: MetaGraph[] = []; // Get SavedModel proto message const modelMessage = await readSavedModelProto(path); // A SavedModel might have multiple MetaGraphs, identified by tags. // Each MetaGraph also has it's own signatureDefs. const metaGraphList = modelMessage.getMetaGraphsList(); for (let i = 0; i < metaGraphList.length; i++) { const metaGraph = {} as MetaGraph; const tags = metaGraphList[i].getMetaInfoDef().getTagsList(); metaGraph.tags = tags; // Each MetaGraph has it's own signatureDefs map. const signatureDef: SignatureDef = {}; const signatureDefMap = metaGraphList[i].getSignatureDefMap(); const signatureDefKeys = signatureDefMap.keys(); // Go through all signatureDefs while (true) { const key = signatureDefKeys.next(); if (key.done) { break; } // Skip TensorFlow internal Signature '__saved_model_init_op'. if (key.value === SAVED_MODEL_INIT_OP_KEY) { continue; } const signatureDefEntry = signatureDefMap.get(key.value); // Get all input tensors information const inputsMapMessage = signatureDefEntry.getInputsMap(); const inputsMapKeys = inputsMapMessage.keys(); const inputs: {[key: string]: ModelTensorInfo} = {}; while (true) { const inputsMapKey = inputsMapKeys.next(); if (inputsMapKey.done) { break; } const inputTensor = inputsMapMessage.get(inputsMapKey.value); const inputTensorInfo = {} as ModelTensorInfo; const dtype = getEnumKeyFromValue(messages.DataType, inputTensor.getDtype()); inputTensorInfo.dtype = mapTFDtypeToJSDtype(dtype); inputTensorInfo.tfDtype = dtype; inputTensorInfo.name = inputTensor.getName(); inputTensorInfo.shape = inputTensor.getTensorShape().getDimList(); inputs[inputsMapKey.value] = inputTensorInfo; } // Get all output tensors information const outputsMapMessage = signatureDefEntry.getOutputsMap(); const outputsMapKeys = outputsMapMessage.keys(); const outputs: {[key: string]: ModelTensorInfo} = {}; while (true) { const outputsMapKey = outputsMapKeys.next(); if (outputsMapKey.done) { break; } const outputTensor = outputsMapMessage.get(outputsMapKey.value); const outputTensorInfo = {} as ModelTensorInfo; const dtype = getEnumKeyFromValue(messages.DataType, outputTensor.getDtype()); outputTensorInfo.dtype = mapTFDtypeToJSDtype(dtype); outputTensorInfo.tfDtype = dtype; outputTensorInfo.name = outputTensor.getName(); outputTensorInfo.shape = outputTensor.getTensorShape().getDimList(); outputs[outputsMapKey.value] = outputTensorInfo; } signatureDef[key.value] = {inputs, outputs}; } metaGraph.signatureDefs = signatureDef; result.push(metaGraph); } return result; } /** * Get SignatureDefEntry from SavedModel metagraphs info. The SignatureDefEntry * will be used when executing a SavedModel signature. * * @param savedModelInfo The MetaGraphInfo array loaded through * getMetaGraphsFromSavedModel(). * @param tags The tags of the MetaGraph to get input/output node names from. * @param signature The signature to get input/output node names from. */ export function getSignatureDefEntryFromMetaGraphInfo( savedModelInfo: MetaGraph[], tags: string[], signature: string): SignatureDefEntry { for (let i = 0; i < savedModelInfo.length; i++) { const metaGraphInfo = savedModelInfo[i]; if (stringArraysHaveSameElements(tags, metaGraphInfo.tags)) { if (metaGraphInfo.signatureDefs[signature] == null) { throw new Error('The SavedModel does not have signature: ' + signature); } return metaGraphInfo.signatureDefs[signature]; } } throw new Error(`The SavedModel does not have tags: ${tags}`); } /** * A `tf.TFSavedModel` is a signature loaded from a SavedModel * metagraph, and allows inference execution. * * @doc {heading: 'Models', subheading: 'SavedModel', namespace: 'node'} */ export class TFSavedModel implements InferenceModel { private disposed = false; private outputNodeNames_: {[key: string]: string}; constructor( private sessionId: number, private jsid: number, private signature: SignatureDefEntry, private backend: NodeJSKernelBackend) {} /** * Return the array of input tensor info. * * @doc {heading: 'Models', subheading: 'SavedModel'} */ get inputs(): ModelTensorInfo[] { const entries = this.signature.inputs; const results = Object.keys(entries).map((key: string) => entries[key]); results.forEach((info: ModelTensorInfo) => { info.name = info.name.replace(/:0$/, ''); }); return results; } /** * Return the array of output tensor info. * * @doc {heading: 'Models', subheading: 'SavedModel'} */ get outputs(): ModelTensorInfo[] { const entries = this.signature.outputs; const results = Object.keys(entries).map((key: string) => entries[key]); results.forEach((info: ModelTensorInfo) => { info.name = info.name.replace(/:0$/, ''); }); return results; } /** * Delete the SavedModel from nodeBackend and delete corresponding session in * the C++ backend if the session is only used by this TFSavedModel. * * @doc {heading: 'Models', subheading: 'SavedModel'} */ dispose() { if (!this.disposed) { this.disposed = true; loadedSavedModelPathMap.delete(this.jsid); for (const id of Array.from(loadedSavedModelPathMap.keys())) { const value = loadedSavedModelPathMap.get(id); if (value.sessionId === this.sessionId) { return; } } this.backend.deleteSavedModel(this.sessionId); } else { throw new Error('This SavedModel has already been deleted.'); } } get outputNodeNames() { if (this.outputNodeNames_ != null) { return this.outputNodeNames_; } this.outputNodeNames_ = Object.keys(this.signature.outputs) .reduce((names: {[key: string]: string}, key: string) => { names[key] = this.signature.outputs[key].name; return names; }, {}); return this.outputNodeNames_; } /** * Execute the inference for the input tensors. * * @param input The input tensors, when there is single input for the model, * inputs param should be a Tensor. For models with multiple inputs, inputs * params should be in either Tensor[] if the input order is fixed, or * otherwise NamedTensorMap format. The keys in the NamedTensorMap are the * name of input tensors in SavedModel signatureDef. It can be found through * `tf.node.getMetaGraphsFromSavedModel()`. * * For batch inference execution, the tensors for each input need to be * concatenated together. For example with mobilenet, the required input shape * is [1, 244, 244, 3], which represents the [batch, height, width, channel]. * If we are provide a batched data of 100 images, the input tensor should be * in the shape of [100, 244, 244, 3]. * * @param config Prediction configuration for specifying the batch size. * * @returns Inference result tensors. The output would be single Tensor if * model has single output node, otherwise Tensor[] or NamedTensorMap[] will * be returned for model with multiple outputs. * * @doc {heading: 'Models', subheading: 'SavedModel'} */ predict(inputs: Tensor|Tensor[]|NamedTensorMap, config?: ModelPredictConfig): Tensor|Tensor[]|NamedTensorMap { if (this.disposed) { throw new Error('The TFSavedModel has already been deleted!'); } else { let inputTensors: Tensor[] = []; if (inputs instanceof Tensor) { inputTensors.push(inputs); const result = this.backend.runSavedModel( this.sessionId, inputTensors, Object.values(this.signature.inputs), Object.values(this.outputNodeNames)); return result.length > 1 ? result : result[0]; } else if (Array.isArray(inputs)) { inputTensors = inputs; return this.backend.runSavedModel( this.sessionId, inputTensors, Object.values(this.signature.inputs), Object.values(this.outputNodeNames)); } else { const inputTensorNames = Object.keys(this.signature.inputs); const providedInputNames = Object.keys(inputs); if (!stringArraysHaveSameElements( inputTensorNames, providedInputNames)) { throw new Error(`The model signatureDef input names are ${ inputTensorNames.join()}, however the provided input names are ${ providedInputNames.join()}.`); } const inputNodeNamesArray: ModelTensorInfo[] = []; for (let i = 0; i < inputTensorNames.length; i++) { inputTensors.push(inputs[inputTensorNames[i]]); inputNodeNamesArray.push(this.signature.inputs[inputTensorNames[i]]); } const outputTensorNames = Object.keys(this.outputNodeNames); const outputNodeNamesArray = []; for (let i = 0; i < outputTensorNames.length; i++) { outputNodeNamesArray.push(this.outputNodeNames[outputTensorNames[i]]); } const outputTensors = this.backend.runSavedModel( this.sessionId, inputTensors, inputNodeNamesArray, outputNodeNamesArray); util.assert( outputTensors.length === outputNodeNamesArray.length, () => 'Output tensors do not match output node names, ' + `receive ${outputTensors.length}) output tensors but ` + `there are ${this.outputNodeNames.length} output nodes.`); const outputMap: NamedTensorMap = {}; for (let i = 0; i < outputTensorNames.length; i++) { outputMap[outputTensorNames[i]] = outputTensors[i]; } return outputMap; } } } /** * Execute the inference for the input tensors and return activation * values for specified output node names without batching. * * @param input The input tensors, when there is single input for the model, * inputs param should be a Tensor. For models with multiple inputs, inputs * params should be in either Tensor[] if the input order is fixed, or * otherwise NamedTensorMap format. * * @param outputs string|string[]. List of output node names to retrieve * activation from. * * @returns Activation values for the output nodes result tensors. The return * type matches specified parameter outputs type. The output would be single * Tensor if single output is specified, otherwise Tensor[] for multiple * outputs. * * @doc {heading: 'Models', subheading: 'SavedModel'} */ execute(inputs: Tensor|Tensor[]|NamedTensorMap, outputs: string|string[]): Tensor|Tensor[] { throw new Error('execute() of TFSavedModel is not supported yet.'); } } /** * Load a TensorFlow SavedModel from disk. TensorFlow SavedModel is different * from TensorFlow.js model format. A SavedModel is a directory containing * serialized signatures and the states needed to run them. The directory has a * saved_model.pb (or saved_model.pbtxt) file storing the actual TensorFlow * program, or model, and a set of named signatures, each identifying a * function. The directory also has a variables directory contains a standard * training checkpoint. The directory may also has a assets directory contains * files used by the TensorFlow graph, for example text files used to initialize * vocabulary tables. These are supported datatypes: float32, int32, complex64, * string.For more information, see this guide: * https://www.tensorflow.org/guide/saved_model. * * @param path The path to the SavedModel. * @param tags The tags of the MetaGraph to load. The available tags of a * SavedModel can be retrieved through tf.node.getMetaGraphsFromSavedModel() * API. Defaults to ['serve']. * @param signature The name of the SignatureDef to load. The available * SignatureDefs of a SavedModel can be retrieved through * tf.node.getMetaGraphsFromSavedModel() API. Defaults to 'serving_default'. * * @doc {heading: 'Models', subheading: 'SavedModel', namespace: 'node'} */ export async function loadSavedModel( path: string, tags = ['serve'], signature = 'serving_default'): Promise<TFSavedModel> { ensureTensorflowBackend(); const backend = nodeBackend(); const savedModelInfo = await getMetaGraphsFromSavedModel(path); const signatureDefEntry = getSignatureDefEntryFromMetaGraphInfo(savedModelInfo, tags, signature); let sessionId: number; for (const id of Array.from(loadedSavedModelPathMap.keys())) { const modelInfo = loadedSavedModelPathMap.get(id); if (modelInfo.path === path && stringArraysHaveSameElements(modelInfo.tags, tags)) { sessionId = modelInfo.sessionId; } } if (sessionId == null) { // Convert metagraph tags string array to a string. const tagsString = tags.join(','); sessionId = backend.loadSavedModelMetaGraph(path, tagsString); } const id = nextTFSavedModelId++; const savedModel = new TFSavedModel(sessionId, id, signatureDefEntry, backend); loadedSavedModelPathMap.set(id, {path, tags, sessionId}); return savedModel; } /** * Compare if two unsorted arrays of string have the same elements. * @param arrayA * @param arrayB */ function stringArraysHaveSameElements( arrayA: string[], arrayB: string[]): boolean { if (arrayA.length === arrayB.length && arrayA.sort().join() === arrayB.sort().join()) { return true; } return false; } function mapTFDtypeToJSDtype(tfDtype: string): DataType { switch (tfDtype) { case 'DT_FLOAT': return 'float32'; case 'DT_INT64': case 'DT_INT32': case 'DT_UINT8': return 'int32'; case 'DT_BOOL': return 'bool'; case 'DT_COMPLEX64': return 'complex64'; case 'DT_STRING': return 'string'; default: throw new Error( 'Unsupported tensor DataType: ' + tfDtype + ', try to modify the model in python to convert the datatype'); } } export function getNumOfSavedModels() { ensureTensorflowBackend(); const backend = nodeBackend(); return backend.getNumOfSavedModels(); }