UNPKG

@tensorflow/tfjs-node

Version:

This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).

60 lines (50 loc) 2.08 kB
/** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ import {KernelConfig, Range, RangeAttrs, scalar, zeros} from '@tensorflow/tfjs'; import {createTensorsTypeOpAttr, NodeJSKernelBackend} from '../nodejs_kernel_backend'; export const rangeConfig: KernelConfig = { kernelName: Range, backendName: 'tensorflow', kernelFunc: (args) => { const backend = args.backend as NodeJSKernelBackend; const {start, stop, dtype} = args.attrs as unknown as RangeAttrs; let {step} = args.attrs as unknown as RangeAttrs; // TensorFlow.js specific allowances const sameStartStop = start === stop; const increasingRangeNegativeStep = start < stop && step < 0; const decreasingRangePositiveStep = stop < start && step > 1; if (sameStartStop || increasingRangeNegativeStep || decreasingRangePositiveStep) { return zeros([0], dtype); } if (stop < start && step === 1) { // Auto adjust the step's sign if it hasn't been set // (or was set to 1) step = -1; } const opAttrs = [createTensorsTypeOpAttr('Tidx', dtype)]; const startTensor = scalar(start, dtype); const stopTensor = scalar(stop, dtype); const stepTensor = scalar(step, dtype); const res = backend.executeSingleOutput( Range, opAttrs, [startTensor, stopTensor, stepTensor]); startTensor.dispose(); stopTensor.dispose(); stepTensor.dispose(); return res; } };