@tensorflow/tfjs-node
Version:
This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).
68 lines (58 loc) • 2.55 kB
text/typescript
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {KernelConfig, NamedAttrMap, NamedTensorInfoMap, scalar, Tensor1D, Tensor2D, TensorInfo} from '@tensorflow/tfjs';
import {createTensorsTypeOpAttr, NodeJSKernelBackend} from '../nodejs_kernel_backend';
interface NonMaxSuppressionWithScoreInputs extends NamedTensorInfoMap {
boxes: TensorInfo;
scores: TensorInfo;
}
interface NonMaxSuppressionWithScoreAttrs extends NamedAttrMap {
maxOutputSize: number;
iouThreshold: number;
scoreThreshold: number;
softNmsSigma: number;
}
// TODO(nsthorat, dsmilkov): Remove dependency on tensors, use dataId.
export const nonMaxSuppressionV5Config: KernelConfig = {
kernelName: 'NonMaxSuppressionV5',
backendName: 'tensorflow',
kernelFunc: ({inputs, backend, attrs}) => {
const {boxes, scores} = inputs as NonMaxSuppressionWithScoreInputs;
const {maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma} =
attrs as NonMaxSuppressionWithScoreAttrs;
const maxOutputSizeTensor = scalar(maxOutputSize, 'int32');
const iouThresholdTensor = scalar(iouThreshold);
const scoreThresholdTensor = scalar(scoreThreshold);
const softNmsSigmaTensor = scalar(softNmsSigma);
const opAttrs = [createTensorsTypeOpAttr('T', boxes.dtype)];
const nodeBackend = backend as NodeJSKernelBackend;
const [selectedIndices, selectedScores, validOutputs] =
nodeBackend.executeMultipleOutputs(
'NonMaxSuppressionV5', opAttrs,
[
boxes as Tensor2D, scores as Tensor1D, maxOutputSizeTensor,
iouThresholdTensor, scoreThresholdTensor, softNmsSigmaTensor
],
3);
maxOutputSizeTensor.dispose();
iouThresholdTensor.dispose();
scoreThresholdTensor.dispose();
softNmsSigmaTensor.dispose();
validOutputs.dispose();
return [selectedIndices, selectedScores];
}
};