UNPKG

@tensorflow/tfjs-node

Version:

This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).

68 lines (58 loc) 2.55 kB
/** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ import {KernelConfig, NamedAttrMap, NamedTensorInfoMap, scalar, Tensor1D, Tensor2D, TensorInfo} from '@tensorflow/tfjs'; import {createTensorsTypeOpAttr, NodeJSKernelBackend} from '../nodejs_kernel_backend'; interface NonMaxSuppressionWithScoreInputs extends NamedTensorInfoMap { boxes: TensorInfo; scores: TensorInfo; } interface NonMaxSuppressionWithScoreAttrs extends NamedAttrMap { maxOutputSize: number; iouThreshold: number; scoreThreshold: number; softNmsSigma: number; } // TODO(nsthorat, dsmilkov): Remove dependency on tensors, use dataId. export const nonMaxSuppressionV5Config: KernelConfig = { kernelName: 'NonMaxSuppressionV5', backendName: 'tensorflow', kernelFunc: ({inputs, backend, attrs}) => { const {boxes, scores} = inputs as NonMaxSuppressionWithScoreInputs; const {maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma} = attrs as NonMaxSuppressionWithScoreAttrs; const maxOutputSizeTensor = scalar(maxOutputSize, 'int32'); const iouThresholdTensor = scalar(iouThreshold); const scoreThresholdTensor = scalar(scoreThreshold); const softNmsSigmaTensor = scalar(softNmsSigma); const opAttrs = [createTensorsTypeOpAttr('T', boxes.dtype)]; const nodeBackend = backend as NodeJSKernelBackend; const [selectedIndices, selectedScores, validOutputs] = nodeBackend.executeMultipleOutputs( 'NonMaxSuppressionV5', opAttrs, [ boxes as Tensor2D, scores as Tensor1D, maxOutputSizeTensor, iouThresholdTensor, scoreThresholdTensor, softNmsSigmaTensor ], 3); maxOutputSizeTensor.dispose(); iouThresholdTensor.dispose(); scoreThresholdTensor.dispose(); softNmsSigmaTensor.dispose(); validOutputs.dispose(); return [selectedIndices, selectedScores]; } };