@tensorflow/tfjs-node
Version:
This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).
57 lines (51 loc) • 2.39 kB
text/typescript
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {backend_util, KernelConfig, MaxPool, MaxPoolAttrs, MaxPoolInputs} from '@tensorflow/tfjs';
import {createTensorsTypeOpAttr, NodeJSKernelBackend} from '../nodejs_kernel_backend';
export const maxPoolConfig: KernelConfig = {
kernelName: MaxPool,
backendName: 'tensorflow',
kernelFunc: (args) => {
const {x} = args.inputs as MaxPoolInputs;
const backend = args.backend as NodeJSKernelBackend;
const {filterSize, strides, pad, dimRoundingMode} =
args.attrs as unknown as MaxPoolAttrs;
const convInfo = backend_util.computePool2DInfo(
x.shape as [number, number, number, number], filterSize, strides,
1 /* dilations */, pad, dimRoundingMode);
if (convInfo.padInfo.type !== 'VALID' && convInfo.padInfo.type !== 'SAME') {
throw new Error(
`TF Backend supports only 'valid' and 'same' padding ` +
`while padding was ${convInfo.padInfo.type}`);
}
const ksize = [1, convInfo.filterHeight, convInfo.filterWidth, 1];
const $strides = [1, convInfo.strideHeight, convInfo.strideWidth, 1];
const padding = convInfo.padInfo.type;
const dataFormat = convInfo.dataFormat === 'channelsLast' ? 'NHWC' : 'NCHW';
const opAttrs = [
createTensorsTypeOpAttr('T', x.dtype),
{name: 'ksize', type: backend.binding.TF_ATTR_INT, value: ksize},
{name: 'strides', type: backend.binding.TF_ATTR_INT, value: $strides},
{name: 'padding', type: backend.binding.TF_ATTR_STRING, value: padding}, {
name: 'data_format',
type: backend.binding.TF_ATTR_STRING,
value: dataFormat
}
];
return backend.executeSingleOutput(MaxPool, opAttrs, [x]);
}
};