UNPKG

@tensorflow/tfjs-node

Version:

This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).

57 lines (51 loc) 2.39 kB
/** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ import {backend_util, KernelConfig, MaxPool, MaxPoolAttrs, MaxPoolInputs} from '@tensorflow/tfjs'; import {createTensorsTypeOpAttr, NodeJSKernelBackend} from '../nodejs_kernel_backend'; export const maxPoolConfig: KernelConfig = { kernelName: MaxPool, backendName: 'tensorflow', kernelFunc: (args) => { const {x} = args.inputs as MaxPoolInputs; const backend = args.backend as NodeJSKernelBackend; const {filterSize, strides, pad, dimRoundingMode} = args.attrs as unknown as MaxPoolAttrs; const convInfo = backend_util.computePool2DInfo( x.shape as [number, number, number, number], filterSize, strides, 1 /* dilations */, pad, dimRoundingMode); if (convInfo.padInfo.type !== 'VALID' && convInfo.padInfo.type !== 'SAME') { throw new Error( `TF Backend supports only 'valid' and 'same' padding ` + `while padding was ${convInfo.padInfo.type}`); } const ksize = [1, convInfo.filterHeight, convInfo.filterWidth, 1]; const $strides = [1, convInfo.strideHeight, convInfo.strideWidth, 1]; const padding = convInfo.padInfo.type; const dataFormat = convInfo.dataFormat === 'channelsLast' ? 'NHWC' : 'NCHW'; const opAttrs = [ createTensorsTypeOpAttr('T', x.dtype), {name: 'ksize', type: backend.binding.TF_ATTR_INT, value: ksize}, {name: 'strides', type: backend.binding.TF_ATTR_INT, value: $strides}, {name: 'padding', type: backend.binding.TF_ATTR_STRING, value: padding}, { name: 'data_format', type: backend.binding.TF_ATTR_STRING, value: dataFormat } ]; return backend.executeSingleOutput(MaxPool, opAttrs, [x]); } };