UNPKG

@tensorflow/tfjs-node

Version:

This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).

59 lines (51 loc) 2.26 kB
/** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ import {backend_util, GatherV2, GatherV2Attrs, GatherV2Inputs, KernelConfig, scalar, Tensor, TypedArray, util} from '@tensorflow/tfjs'; import {createTensorsTypeOpAttr, NodeJSKernelBackend} from '../nodejs_kernel_backend'; export const gatherV2Config: KernelConfig = { kernelName: GatherV2, backendName: 'tensorflow', kernelFunc: (args) => { const {x, indices} = args.inputs as GatherV2Inputs; const backend = args.backend as NodeJSKernelBackend; const {axis, batchDims} = args.attrs as unknown as GatherV2Attrs; // Throw error when any index is out of bound. const indicesVals = backend.readSync(indices.dataId) as TypedArray; const axisDim = x.shape[axis]; for (let i = 0; i < indicesVals.length; ++i) { const index = indicesVals[i]; util.assert( index <= axisDim - 1 && index >= 0, () => `GatherV2: the index value ${index} is not in [0, ${ axisDim - 1}]`); } // validate the inputs backend_util.segment_util.collectGatherOpShapeInfo( x as Tensor, indices as Tensor, axis, batchDims); const axisTensor = scalar(axis, 'int32'); const opAttrs = [ {name: 'batch_dims', type: backend.binding.TF_ATTR_INT, value: batchDims}, createTensorsTypeOpAttr('Tparams', x.dtype), createTensorsTypeOpAttr('Tindices', indices.dtype), createTensorsTypeOpAttr('Taxis', 'int32') ]; const res = backend.executeSingleOutput( GatherV2, opAttrs, [x, indices, axisTensor]); axisTensor.dispose(); return res; } };