UNPKG

@tensorflow/tfjs-node

Version:

This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).

71 lines (65 loc) 2.65 kB
/** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ import {add, fill, FusedBatchNorm, FusedBatchNormAttrs, FusedBatchNormInputs, KernelConfig, mul, Rank, rsqrt, scalar, sub, Tensor, Tensor4D, tidy} from '@tensorflow/tfjs'; import {createTensorsTypeOpAttr, NodeJSKernelBackend} from '../nodejs_kernel_backend'; export const fusedBatchNormConfig: KernelConfig = { kernelName: FusedBatchNorm, backendName: 'tensorflow', kernelFunc: (args) => { const {x, mean, variance} = args.inputs as FusedBatchNormInputs; let {scale, offset} = args.inputs as FusedBatchNormInputs; const backend = args.backend as NodeJSKernelBackend; const {varianceEpsilon} = args.attrs as unknown as FusedBatchNormAttrs; return tidy(() => { if ((mean as Tensor).rank > 1) { // Fused batch norm doesn't work with high-dim mean/var/scale/offset. let inv = rsqrt(add(variance as Tensor, scalar(varianceEpsilon))); if (scale != null) { inv = mul(inv, scale as Tensor); } const xNorm: Tensor4D = mul(sub(x as Tensor, mean as Tensor), inv); return offset != null ? add(xNorm, offset as Tensor) : xNorm; } const dataFormat = 'NHWC'; const depth = x.shape[3]; const opAttrs = [ createTensorsTypeOpAttr('T', x.dtype), { name: 'epsilon', type: backend.binding.TF_ATTR_FLOAT, value: varianceEpsilon }, { name: 'data_format', type: backend.binding.TF_ATTR_STRING, value: dataFormat }, {name: 'is_training', type: backend.binding.TF_ATTR_BOOL, value: false}, ]; const numOutputs = 5; if (scale == null) { scale = fill<Rank.R1>([depth], 1); } if (offset == null) { offset = fill<Rank.R1>([depth], 0); } return backend.executeMultipleOutputs( FusedBatchNorm, opAttrs, [x, scale, offset, mean, variance], numOutputs)[0]; }); } };