@tensorflow/tfjs-node
Version:
This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).
71 lines (65 loc) • 2.65 kB
text/typescript
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {add, fill, FusedBatchNorm, FusedBatchNormAttrs, FusedBatchNormInputs, KernelConfig, mul, Rank, rsqrt, scalar, sub, Tensor, Tensor4D, tidy} from '@tensorflow/tfjs';
import {createTensorsTypeOpAttr, NodeJSKernelBackend} from '../nodejs_kernel_backend';
export const fusedBatchNormConfig: KernelConfig = {
kernelName: FusedBatchNorm,
backendName: 'tensorflow',
kernelFunc: (args) => {
const {x, mean, variance} = args.inputs as FusedBatchNormInputs;
let {scale, offset} = args.inputs as FusedBatchNormInputs;
const backend = args.backend as NodeJSKernelBackend;
const {varianceEpsilon} = args.attrs as unknown as FusedBatchNormAttrs;
return tidy(() => {
if ((mean as Tensor).rank > 1) {
// Fused batch norm doesn't work with high-dim mean/var/scale/offset.
let inv = rsqrt(add(variance as Tensor, scalar(varianceEpsilon)));
if (scale != null) {
inv = mul(inv, scale as Tensor);
}
const xNorm: Tensor4D = mul(sub(x as Tensor, mean as Tensor), inv);
return offset != null ? add(xNorm, offset as Tensor) : xNorm;
}
const dataFormat = 'NHWC';
const depth = x.shape[3];
const opAttrs = [
createTensorsTypeOpAttr('T', x.dtype),
{
name: 'epsilon',
type: backend.binding.TF_ATTR_FLOAT,
value: varianceEpsilon
},
{
name: 'data_format',
type: backend.binding.TF_ATTR_STRING,
value: dataFormat
},
{name: 'is_training', type: backend.binding.TF_ATTR_BOOL, value: false},
];
const numOutputs = 5;
if (scale == null) {
scale = fill<Rank.R1>([depth], 1);
}
if (offset == null) {
offset = fill<Rank.R1>([depth], 0);
}
return backend.executeMultipleOutputs(
FusedBatchNorm, opAttrs, [x, scale, offset, mean, variance],
numOutputs)[0];
});
}
};