@tensorflow/tfjs-node
Version:
This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).
61 lines (56 loc) • 2.02 kB
text/typescript
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {Fill, FillAttrs, KernelConfig, scalar, tensor1d} from '@tensorflow/tfjs';
import {NodeJSKernelBackend} from '../nodejs_kernel_backend';
export const fillConfig: KernelConfig = {
kernelName: Fill,
backendName: 'tensorflow',
kernelFunc: (args) => {
const backend = args.backend as NodeJSKernelBackend;
const {shape, value} = args.attrs as unknown as FillAttrs;
let {dtype} = args.attrs as unknown as FillAttrs;
// TODO(cais, nkreeger): Investigate whether backend can be made into
// a dtype helper method. The underlying op kernel doesn't accept undefined
// or null dtype.
if (dtype == null) {
if (typeof value === 'number') {
dtype = 'float32';
} else {
dtype = 'string';
}
}
const shapeTensor = tensor1d(shape, 'int32');
const valueTensor = scalar(value, dtype);
const opAttrs = [
{
name: 'T',
type: backend.binding.TF_ATTR_TYPE,
value: backend.getDTypeInteger(dtype)
},
{
name: 'index_type',
type: backend.binding.TF_ATTR_TYPE,
value: backend.binding.TF_INT32
}
];
const res =
backend.executeSingleOutput(Fill, opAttrs, [shapeTensor, valueTensor]);
shapeTensor.dispose();
valueTensor.dispose();
return res;
}
};