UNPKG

@tensorflow/tfjs-node

Version:

This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).

70 lines (63 loc) 3.07 kB
/** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ import {backend_util, Conv2DBackpropInput, Conv2DBackpropInputAttrs, Conv2DBackpropInputInputs, KernelConfig, tensor1d, Tensor4D, TensorInfo} from '@tensorflow/tfjs'; import {createTensorsTypeOpAttr, NodeJSKernelBackend} from '../nodejs_kernel_backend'; export const conv2DBackpropInputConfig: KernelConfig = { kernelName: Conv2DBackpropInput, backendName: 'tensorflow', kernelFunc: (args) => { const {dy, filter} = args.inputs as Conv2DBackpropInputInputs; const backend = args.backend as NodeJSKernelBackend; const {strides, pad, dataFormat, dimRoundingMode, inputShape} = args.attrs as unknown as Conv2DBackpropInputAttrs; const $dataFormat = backend_util.convertConv2DDataFormat(dataFormat); const convInfo = backend_util.computeConv2DInfo( inputShape, filter.shape as [number, number, number, number], strides, 1 /* dilations */, pad, dimRoundingMode, false, $dataFormat); return conv2DBackpropInputImpl(dy, filter, convInfo, backend); } }; function conv2DBackpropInputImpl( dy: TensorInfo, filter: TensorInfo, convInfo: backend_util.Conv2DInfo, backend: NodeJSKernelBackend): Tensor4D { if (convInfo.padInfo.type !== 'VALID' && convInfo.padInfo.type !== 'SAME') { throw new Error( `TF Backend supports only 'valid' and 'same' padding ` + `while padding was ${convInfo.padInfo.type}`); } const strides = [1, convInfo.strideHeight, convInfo.strideWidth, 1]; const padding = convInfo.padInfo.type; const dataFormat = convInfo.dataFormat === 'channelsLast' ? 'NHWC' : 'NCHW'; const dilations = [1, convInfo.dilationHeight, convInfo.dilationWidth, 1]; const opAttrs = [ createTensorsTypeOpAttr('T', 'float32'), {name: 'strides', type: backend.binding.TF_ATTR_INT, value: strides}, {name: 'padding', type: backend.binding.TF_ATTR_STRING, value: padding}, { name: 'data_format', type: backend.binding.TF_ATTR_STRING, value: dataFormat }, {name: 'use_cudnn_on_gpu', type: backend.binding.TF_ATTR_BOOL, value: true}, {name: 'dilations', type: backend.binding.TF_ATTR_INT, value: dilations} ]; const inputSizes = tensor1d(convInfo.inShape, 'int32'); const res = backend.executeSingleOutput( Conv2DBackpropInput, opAttrs, [inputSizes, filter, dy]) as Tensor4D; inputSizes.dispose(); return res; }