@tensorflow/tfjs-node
Version:
This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).
70 lines (63 loc) • 3.07 kB
text/typescript
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {backend_util, Conv2DBackpropInput, Conv2DBackpropInputAttrs, Conv2DBackpropInputInputs, KernelConfig, tensor1d, Tensor4D, TensorInfo} from '@tensorflow/tfjs';
import {createTensorsTypeOpAttr, NodeJSKernelBackend} from '../nodejs_kernel_backend';
export const conv2DBackpropInputConfig: KernelConfig = {
kernelName: Conv2DBackpropInput,
backendName: 'tensorflow',
kernelFunc: (args) => {
const {dy, filter} = args.inputs as Conv2DBackpropInputInputs;
const backend = args.backend as NodeJSKernelBackend;
const {strides, pad, dataFormat, dimRoundingMode, inputShape} =
args.attrs as unknown as Conv2DBackpropInputAttrs;
const $dataFormat = backend_util.convertConv2DDataFormat(dataFormat);
const convInfo = backend_util.computeConv2DInfo(
inputShape, filter.shape as [number, number, number, number], strides,
1 /* dilations */, pad, dimRoundingMode, false, $dataFormat);
return conv2DBackpropInputImpl(dy, filter, convInfo, backend);
}
};
function conv2DBackpropInputImpl(
dy: TensorInfo, filter: TensorInfo, convInfo: backend_util.Conv2DInfo,
backend: NodeJSKernelBackend): Tensor4D {
if (convInfo.padInfo.type !== 'VALID' && convInfo.padInfo.type !== 'SAME') {
throw new Error(
`TF Backend supports only 'valid' and 'same' padding ` +
`while padding was ${convInfo.padInfo.type}`);
}
const strides = [1, convInfo.strideHeight, convInfo.strideWidth, 1];
const padding = convInfo.padInfo.type;
const dataFormat = convInfo.dataFormat === 'channelsLast' ? 'NHWC' : 'NCHW';
const dilations = [1, convInfo.dilationHeight, convInfo.dilationWidth, 1];
const opAttrs = [
createTensorsTypeOpAttr('T', 'float32'),
{name: 'strides', type: backend.binding.TF_ATTR_INT, value: strides},
{name: 'padding', type: backend.binding.TF_ATTR_STRING, value: padding}, {
name: 'data_format',
type: backend.binding.TF_ATTR_STRING,
value: dataFormat
},
{name: 'use_cudnn_on_gpu', type: backend.binding.TF_ATTR_BOOL, value: true},
{name: 'dilations', type: backend.binding.TF_ATTR_INT, value: dilations}
];
const inputSizes = tensor1d(convInfo.inShape, 'int32');
const res =
backend.executeSingleOutput(
Conv2DBackpropInput, opAttrs, [inputSizes, filter, dy]) as Tensor4D;
inputSizes.dispose();
return res;
}