@tensorflow/tfjs-node
Version:
This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).
66 lines (61 loc) • 2.69 kB
text/typescript
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {AvgPool3DGrad, AvgPool3DGradAttrs, AvgPool3DGradInputs, backend_util, KernelConfig, tensor1d} from '@tensorflow/tfjs';
import {createTensorsTypeOpAttr, NodeJSKernelBackend} from '../nodejs_kernel_backend';
export const avgPool3DGradConfig: KernelConfig = {
kernelName: AvgPool3DGrad,
backendName: 'tensorflow',
kernelFunc: (args) => {
const {dy, input} = args.inputs as AvgPool3DGradInputs;
const backend = args.backend as NodeJSKernelBackend;
const {filterSize, strides, pad, dimRoundingMode} =
args.attrs as unknown as AvgPool3DGradAttrs;
const convInfo = backend_util.computePool3DInfo(
input.shape as [number, number, number, number, number], filterSize,
strides, 1 /* dilations */, pad, dimRoundingMode);
if (convInfo.padInfo.type !== 'VALID' && convInfo.padInfo.type !== 'SAME') {
throw new Error(
`TF Backend supports only 'valid' and 'same' padding ` +
`while padding type was ${convInfo.padInfo.type}`);
}
const ksize = [
1, convInfo.filterDepth, convInfo.filterHeight, convInfo.filterWidth, 1
];
const $strides = [
1, convInfo.strideDepth, convInfo.strideHeight, convInfo.strideWidth, 1
];
const padding = convInfo.padInfo.type;
const dataFormat =
convInfo.dataFormat === 'channelsLast' ? 'NDHWC' : 'NCDHW';
const opAttrs = [
createTensorsTypeOpAttr('T', input.dtype),
{name: 'ksize', type: backend.binding.TF_ATTR_INT, value: ksize},
{name: 'strides', type: backend.binding.TF_ATTR_INT, value: $strides},
{name: 'padding', type: backend.binding.TF_ATTR_STRING, value: padding},
{
name: 'data_format',
type: backend.binding.TF_ATTR_STRING,
value: dataFormat
},
];
const origInputShape = tensor1d(input.shape, 'int32');
const res = backend.executeSingleOutput(
AvgPool3DGrad, opAttrs, [origInputShape, dy]);
origInputShape.dispose();
return res;
}
};