UNPKG

@tensorflow/tfjs-node

Version:

This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).

185 lines (184 loc) 9.33 kB
"use strict"; /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (g && (g = 0, op[0] && (_ = 0)), _) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("@tensorflow/tfjs"); // tslint:disable-next-line: no-imports-from-dist var jasmine_util_1 = require("@tensorflow/tfjs-core/dist/jasmine_util"); var nodejs_kernel_backend_1 = require("./nodejs_kernel_backend"); describe('delayed upload', function () { it('should handle data before op execution', function () { return __awaiter(void 0, void 0, void 0, function () { var t, _a, _b, r, _c, _d; return __generator(this, function (_e) { switch (_e.label) { case 0: t = tf.tensor1d([1, 2, 3]); _b = (_a = tf.test_util).expectArraysClose; return [4 /*yield*/, t.data()]; case 1: _b.apply(_a, [_e.sent(), [1, 2, 3]]); r = t.add(tf.tensor1d([4, 5, 6])); _d = (_c = tf.test_util).expectArraysClose; return [4 /*yield*/, r.data()]; case 2: _d.apply(_c, [_e.sent(), [5, 7, 9]]); return [2 /*return*/]; } }); }); }); it('Should not cache tensors in the tensor map for device support. ', function () { var logits = tf.tensor1d([1, 2, 3]); var softmaxLogits = tf.softmax(logits); var data = softmaxLogits.dataSync(); expect(softmaxLogits.dataSync()[0]).toEqual(data[0]); expect(softmaxLogits.dataSync()[1]).toEqual(data[1]); expect(softmaxLogits.dataSync()[2]).toEqual(data[2]); }); }); describe('type casting', function () { it('exp support int32', function () { tf.exp(tf.scalar(2, 'int32')); }); }); describe('conv3d dilations', function () { it('CPU should throw error on dilations >1', function () { var input = tf.ones([1, 2, 2, 2, 1]); var filter = tf.ones([1, 1, 1, 1, 1]); expect(function () { tf.conv3d(input, filter, 1, 'same', 'NDHWC', [2, 2, 2]); }).toThrowError(); }); it('GPU should handle dilations >1', function () { // This test can only run locally with CUDA bindings and GPU package // installed. if (tf.backend().isUsingGpuDevice) { var input = tf.ones([1, 2, 2, 2, 1]); var filter = tf.ones([1, 1, 1, 1, 1]); tf.conv3d(input, filter, 1, 'same', 'NDHWC', [2, 2, 2]); } }); }); describe('Exposes Backend for internal Op execution.', function () { it('Provides the Node backend over a function', function () { var backend = (0, nodejs_kernel_backend_1.nodeBackend)(); expect(backend instanceof nodejs_kernel_backend_1.NodeJSKernelBackend).toBeTruthy(); }); it('Provides internal access to the binding', function () { expect((0, nodejs_kernel_backend_1.nodeBackend)().binding).toBeDefined(); }); it('throw error if backend is not tensorflow', function () { return __awaiter(void 0, void 0, void 0, function () { var testBackend; return __generator(this, function (_a) { testBackend = new jasmine_util_1.TestKernelBackend(); tf.registerBackend('fake', function () { return testBackend; }); tf.setBackend('fake'); try { expect(function () { return (0, nodejs_kernel_backend_1.ensureTensorflowBackend)(); }).toThrowError('Expect the current backend to be "tensorflow", but got "fake"'); } finally { tf.setBackend('tensorflow'); } return [2 /*return*/]; }); }); }); }); describe('getTFDType()', function () { var binding = (0, nodejs_kernel_backend_1.nodeBackend)().binding; it('handles float32', function () { expect((0, nodejs_kernel_backend_1.getTFDType)('float32')).toBe(binding.TF_FLOAT); }); it('handles int32', function () { expect((0, nodejs_kernel_backend_1.getTFDType)('int32')).toBe(binding.TF_INT32); }); it('handles bool', function () { expect((0, nodejs_kernel_backend_1.getTFDType)('bool')).toBe(binding.TF_BOOL); }); it('handles unknown types', function () { expect(function () { return (0, nodejs_kernel_backend_1.getTFDType)(null); }).toThrowError(); }); }); describe('createTypeOpAttr()', function () { var binding = (0, nodejs_kernel_backend_1.nodeBackend)().binding; it('Creates a valid type attribute', function () { var attr = (0, nodejs_kernel_backend_1.createTensorsTypeOpAttr)('foo', 'float32'); expect(attr.name).toBe('foo'); expect(attr.type).toBe(binding.TF_ATTR_TYPE); expect(attr.value).toBe(binding.TF_FLOAT); }); it('handles unknown dtypes', function () { expect(function () { return (0, nodejs_kernel_backend_1.createTensorsTypeOpAttr)('foo', null); }).toThrowError(); }); }); describe('Returns TFEOpAttr for a Tensor or list of Tensors', function () { var binding = (0, nodejs_kernel_backend_1.nodeBackend)().binding; it('handles a single Tensor', function () { var result = (0, nodejs_kernel_backend_1.createTensorsTypeOpAttr)('T', tf.scalar(13, 'float32')); expect(result.name).toBe('T'); expect(result.type).toBe(binding.TF_ATTR_TYPE); expect(result.value).toBe(binding.TF_FLOAT); }); it('handles a list of Tensors', function () { var tensors = [tf.scalar(1, 'int32'), tf.scalar(20.1, 'float32')]; var result = (0, nodejs_kernel_backend_1.createTensorsTypeOpAttr)('T', tensors); expect(result.name).toBe('T'); expect(result.type).toBe(binding.TF_ATTR_TYPE); expect(result.value).toBe(binding.TF_INT32); }); it('handles null', function () { expect(function () { return (0, nodejs_kernel_backend_1.createTensorsTypeOpAttr)('T', null); }).toThrowError(); }); it('handles list of null', function () { var inputs = [null, null]; expect(function () { return (0, nodejs_kernel_backend_1.createTensorsTypeOpAttr)('T', inputs); }).toThrowError(); }); });