UNPKG

@tensorflow/tfjs-node

Version:

This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).

53 lines (52 loc) 2.25 kB
"use strict"; /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ Object.defineProperty(exports, "__esModule", { value: true }); exports.rangeConfig = void 0; var tfjs_1 = require("@tensorflow/tfjs"); var nodejs_kernel_backend_1 = require("../nodejs_kernel_backend"); exports.rangeConfig = { kernelName: tfjs_1.Range, backendName: 'tensorflow', kernelFunc: function (args) { var backend = args.backend; var _a = args.attrs, start = _a.start, stop = _a.stop, dtype = _a.dtype; var step = args.attrs.step; // TensorFlow.js specific allowances var sameStartStop = start === stop; var increasingRangeNegativeStep = start < stop && step < 0; var decreasingRangePositiveStep = stop < start && step > 1; if (sameStartStop || increasingRangeNegativeStep || decreasingRangePositiveStep) { return (0, tfjs_1.zeros)([0], dtype); } if (stop < start && step === 1) { // Auto adjust the step's sign if it hasn't been set // (or was set to 1) step = -1; } var opAttrs = [(0, nodejs_kernel_backend_1.createTensorsTypeOpAttr)('Tidx', dtype)]; var startTensor = (0, tfjs_1.scalar)(start, dtype); var stopTensor = (0, tfjs_1.scalar)(stop, dtype); var stepTensor = (0, tfjs_1.scalar)(step, dtype); var res = backend.executeSingleOutput(tfjs_1.Range, opAttrs, [startTensor, stopTensor, stepTensor]); startTensor.dispose(); stopTensor.dispose(); stepTensor.dispose(); return res; } };