UNPKG

@tensorflow/tfjs-node

Version:

This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).

48 lines (47 loc) 2.39 kB
"use strict"; /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ Object.defineProperty(exports, "__esModule", { value: true }); exports.nonMaxSuppressionV5Config = void 0; var tfjs_1 = require("@tensorflow/tfjs"); var nodejs_kernel_backend_1 = require("../nodejs_kernel_backend"); // TODO(nsthorat, dsmilkov): Remove dependency on tensors, use dataId. exports.nonMaxSuppressionV5Config = { kernelName: 'NonMaxSuppressionV5', backendName: 'tensorflow', kernelFunc: function (_a) { var inputs = _a.inputs, backend = _a.backend, attrs = _a.attrs; var _b = inputs, boxes = _b.boxes, scores = _b.scores; var _c = attrs, maxOutputSize = _c.maxOutputSize, iouThreshold = _c.iouThreshold, scoreThreshold = _c.scoreThreshold, softNmsSigma = _c.softNmsSigma; var maxOutputSizeTensor = (0, tfjs_1.scalar)(maxOutputSize, 'int32'); var iouThresholdTensor = (0, tfjs_1.scalar)(iouThreshold); var scoreThresholdTensor = (0, tfjs_1.scalar)(scoreThreshold); var softNmsSigmaTensor = (0, tfjs_1.scalar)(softNmsSigma); var opAttrs = [(0, nodejs_kernel_backend_1.createTensorsTypeOpAttr)('T', boxes.dtype)]; var nodeBackend = backend; var _d = nodeBackend.executeMultipleOutputs('NonMaxSuppressionV5', opAttrs, [ boxes, scores, maxOutputSizeTensor, iouThresholdTensor, scoreThresholdTensor, softNmsSigmaTensor ], 3), selectedIndices = _d[0], selectedScores = _d[1], validOutputs = _d[2]; maxOutputSizeTensor.dispose(); iouThresholdTensor.dispose(); scoreThresholdTensor.dispose(); softNmsSigmaTensor.dispose(); validOutputs.dispose(); return [selectedIndices, selectedScores]; } };