UNPKG

@tensorflow/tfjs-node

Version:

This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).

43 lines (42 loc) 1.97 kB
"use strict"; /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ Object.defineProperty(exports, "__esModule", { value: true }); exports.nonMaxSuppressionV3Config = void 0; var tfjs_1 = require("@tensorflow/tfjs"); var nodejs_kernel_backend_1 = require("../nodejs_kernel_backend"); exports.nonMaxSuppressionV3Config = { kernelName: tfjs_1.NonMaxSuppressionV3, backendName: 'tensorflow', kernelFunc: function (args) { var _a = args.inputs, boxes = _a.boxes, scores = _a.scores; var backend = args.backend; var _b = args.attrs, maxOutputSize = _b.maxOutputSize, iouThreshold = _b.iouThreshold, scoreThreshold = _b.scoreThreshold; var opAttrs = [(0, nodejs_kernel_backend_1.createTensorsTypeOpAttr)('T', boxes.dtype)]; var maxOutputSizeTensor = (0, tfjs_1.scalar)(maxOutputSize, 'int32'); var iouThresholdTensor = (0, tfjs_1.scalar)(iouThreshold); var scoreThresholdTensor = (0, tfjs_1.scalar)(scoreThreshold); var res = backend.executeSingleOutput(tfjs_1.NonMaxSuppressionV3, opAttrs, [ boxes, scores, maxOutputSizeTensor, iouThresholdTensor, scoreThresholdTensor ]); maxOutputSizeTensor.dispose(); iouThresholdTensor.dispose(); scoreThresholdTensor.dispose(); return res; } };