UNPKG

@tensorflow/tfjs-node

Version:

This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).

45 lines (44 loc) 2.01 kB
"use strict"; /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ Object.defineProperty(exports, "__esModule", { value: true }); exports.multinomialConfig = void 0; var tfjs_1 = require("@tensorflow/tfjs"); var nodejs_kernel_backend_1 = require("../nodejs_kernel_backend"); exports.multinomialConfig = { kernelName: tfjs_1.Multinomial, backendName: 'tensorflow', kernelFunc: function (args) { var logits = args.inputs.logits; var backend = args.backend; var _a = args.attrs, numSamples = _a.numSamples, seed = _a.seed, normalized = _a.normalized; if (normalized) { throw new Error('TF Node backend does not support normalized logits ' + 'passed to multinomial'); } var opAttrs = [ (0, nodejs_kernel_backend_1.createTensorsTypeOpAttr)('T', logits.dtype), (0, nodejs_kernel_backend_1.createTensorsTypeOpAttr)('output_dtype', 'int32'), { name: 'seed', type: backend.binding.TF_ATTR_INT, value: seed }, { name: 'seed2', type: backend.binding.TF_ATTR_INT, value: seed * seed }, ]; var numSamplesTensor = (0, tfjs_1.scalar)(numSamples, 'int32'); var res = backend.executeSingleOutput(tfjs_1.Multinomial, opAttrs, [logits, numSamplesTensor]); numSamplesTensor.dispose(); return res; } };